Variational Methods in Image Processing
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History

The Brachistochrone Problem:

“Given two points A and B in a vertical
plane, what is the curve traced out by
a point acted on only by gravity, which
starts at A and reaches B in the
shortest time.”

Johann Bernoulli in 1696
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History

The Brachistochrone Problem:

“Given two points A and B in a vertical
plane, what is the curve traced out by
a point acted on only by gravity, which
starts at A and reaches B in the
shortest time.”

Johann Bernoulli in 1696

In one year Newton, Johann and o x
Jacob Bernoulli, Leibniz, and de
LHépital came with the solution. B
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History

The problem was generalized and an analytic method was
given by Euler (1744) and Lagrange (1760).
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@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals
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Calculus of Variations

@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals

@ Calculus of Variations solves

min F(u(x)),

u

where u € X,
F: X— R,
X ...Banach space
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Calculus of Variations

@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals

@ Calculus of Variations solves

min F(u(x)),

u

where u € X,
F: X— R,
X ...Banach space

@ solution by means of Euler-Lagrange (E-L) equation

Variational Methods



Introduction Motivation E-L PDE

Calculus of Variations

Integral functionals

F(u) = /Q F(x, u(x), Vu(x))dx

@ x € R? ...space of coordinates [xy, Xo]
@ Q...image support

@ u(x): R? — R...grayscale image

@ Vu(x) ...image gradient [uy, , Uy,]
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Examples

@ Image Registration
given a set of CP pairs [x;, yi] < [Xi, Vi
find X = f(x,y), ¥ = g(x, y)

F(f) = (% — f(xi, )% + A / / fe, + 2fZ, + 12 dxdy

i

and a similar equation for g(x, y)
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Examples

@ Image Registration
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Examples

@ Image Registration

@ Image Reconstruction
given an image acquisition model H(-) and measurement g
find the original image u

F(u) = /(H(u)—g)zdx+>\/|Vu|2
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Examples

@ Image Registration

U 455R51els KRAY
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Examples

@ Image Segmentation
find a piece-wise constant representation v of an image g

F(u,K)—/Q K(u—g)zdx+a/Q_K]Vu\2dx+ﬂ/de
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Examples

@ Image Segmentation
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Examples

@ Image Segmentation

a 2

@ Motion Estimation
find velocity field v(x) = [vq(x), vo(x)] in an image sequence

u(x,t)

F(v):/|v-Vu+ ut|dx+a2/Vv,-|dx+B/C(Vu)|v|2dx
i
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Examples

@ Image Segmentation

@ Motion Estimation
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Examples

@ Image classification

Variational Methods



Introduction Motivation E-L PDE

Examples

@ Image classification
@ and many more
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Outline

Q Introduction

@ Derivation of Euler-Lagrange Equation
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Extrema points

From the differential calculus follows that
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

d
EQ(X—I—sV) -—0 =0
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

;;g(x + ev) _,=0 = (Vg(x),v)
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

;;g(x—ksu) 620:0 = (Vg(x),v) & Vgx)=0
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

E=

d
%g(x + ev) 0= 0 = (Vgx),v) & Vgx)=0
in 1-D (g : R — R) we get the classical condition

gx)=0
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Variation of Functional

b
F(u) :/ f(x,u,u)dx
2 u(x)+evix)

77\ A\ (x)
\ /
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Variation of Functional

F(u) = /ab f(x,u,u)dx

i i ulx)+evix)
if uis extremum of F then from /’-\ (x)
differential calculus follows \ /N X
d \/
—F(u+ev)] =0 Vv
de e=0 ; !
a

b
F(u+5v):/ f(x,u+ev,u +ev')dx
a
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Partial derivatives

f(x,u) = xu
o _y
ox
o _

dx
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Partial derivatives

f(x,u) = xu = xu(x) = xsinx

a—f =Uu=-Ssinx

ox

but

af , .

— = chain rule = sin x + x cos x
ax
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Chain Rule

d 0 du 0 av
S (U0, V() = (%f(u, v))a + (Ef(u, v)) o
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Chain Rule

d 0 du 0 av
S (U0, V() = (a—uf(u, v))a + (Ef(u, v)) o

u(x) = x, v(x) =sinx, f = uv = xsinx

i{f(u, v) = v(x)1 + u(x)cos x = sin x + x cos x
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Chain Rule

d 0 du 0 av
S (U0, V() = (%f(u, v)>a + (Ef(u, v)) o

u(x) = x, v(x) =sinx, f = uv = xsinx

i{f(u, v) = v(x)1 4+ u(x)cos x = sin x + x cos x
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Chain Rule

d ) du /0 dv
S (U0, V() = (a—uf(u, v))a + (af(u, v)) o

if(u, V) = v(x)1 + u(x)cos x = sin x + x cos x

adx
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per partes
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Derivation of E-L equation

CiF(u+sv / f(x,u+ev,u +ev)
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Derivation of E-L equation

dF(u+sv)—d/bf(x u+ev,u +ev)
de - de J, ’ ’

b
of or chain rule
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Derivation of E-L equation

d d (b , ,
—F(u+ev)=— f(x,u+ev,u +ev)
de J,

de
= ba—vara—f ! chain rule
5 Ou ou’
b Hf b g of of b
per partes

v ——V+—V
a Ou a2 axou +8u’ a
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Derivation of E-L equation

d d (b , ,
—F(u+ev)=— f(x,u+ev,u +ev)
de J,

de
= ba—vara—f’ chain rule
5 Ou ou’
= ba—fv— bia—fv+a—fvb per partes
a Ou a2 axou ou' la

b

_/b g_iﬁ V_i_gv =0
~Ja lOu dxou ou la
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Derivation of E-L equation

d d (b , ,
—F(u+ev)=— f(x,u+ev,u +ev)
de J,

de
= ba—vara—f’ chain rule
a Ou ou’
= ba—fv— bia—fv+a—fvb per partes
a Ou a2 axou ou'  la
_/b ({)fd(()f:|v gvb—o
2 |ou dxou ou' - la

to be equal to 0 for any v, [% — d%’(%} =0 — E-L equation
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Derivation of E-L equation

d d (b , ,
—F(u+ev)=— f(x,u+ev,u +ev)
de J,

de
= ba—vara—f’ chain rule
a Ou ou’
= ba—fv— bia—fv+a—fvb per partes
a Ou a2 axou ou'  la
:/b[af_daf]v+afvb:o
a LOu dxou ou'  la

to be equal to 0, we need boundary conditions,
e.g., fixed u(a), u(b) — v(a) = v(b) = 0. niim
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = y(x).

<y
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = y(x).

<y

@ We want to minimize F(y(x)) = \/1 + y'(x)%dx
with b.c. y(a) = «, y(b ) B.
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that

one can write y = y(x).

a

<y

@ We want to minimize F(y(x)) = f: V1 +y/(x)2dx
with b.c. y(a) = «, y(b) = 5.
yx) _ g

._d
@ E-Leq.: —g e
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that

one can write y = y(x).

<y

\/1 + y'(x)%dx
=Cy1+y?

@ We want to minimize F(y(x))
with b.c. y(a) = «, y(b) = 5
:>

@ E-Leq.: #2)2
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that

one can write y = y(x).

<y

@ We want to minimize F(y(x)) \/1 + y'(x)2dx
with b.c. y(a) = «, y(b ) 5

@ E-Leq. 71+(yxz)2:0:>y CV1+y?=

y’ = constant
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = y(x).

<y

@ We want to minimize F(y(x)) \/1 + y'(x)2dx
with b.c. y(a) = «, y(b ) 5

@ E-Leq: 71+(yxz)2:0:>y CV1+y?=

y' = constant
@ y(x) is a straight line between A and B.
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E-L equation

If u(x) : RV — Ris extremum of F(u) = [, f(x, u, Vu)dx,
where Vu = [Uy,, . . ., Ux]
then
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E-L equation

If u(x) : RV — Ris extremum of F(u) = [, f(x, u, Vu)dx,
where Vu = [Uy,, . . ., Ux]
then

which is the E-L equation.
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Beltrami Identity

o of d ( 8f> _

ou  dx\ou
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Beltrami Identity

f(x,u,u)
af of , of , of

= _ 7 "
adx 8uu 8u’u+8x

of  d s of
%‘a(%)z

Variational Methods



Introduction Motivation E-L PDE

Beltrami Identity

/ o dary_
fox, u,u) ou dx<aU’>_
oo, ot of
dx ou ou' ox
of , df of , of of . d

—U ==y - = U— —u (if)_
ou dx ou Ox ou dx \ou'/
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Beltrami Identity

/ o dary_
fox, u,u) ou dx<aU’>_
oo, ot of
dx ou ou' ox
of , df of , of of . d

—U ==y - = U— —u (if)_
ou dx ou Ox ou dx \ou'/

af  of , of ,d<af):0

ax ov” Tox Yax\aw
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Beltrami Identity

of d /of
f ! _ [ — g
(%, u, i) ou dx (aw)
g_ifu’+ifu”+if
dx ou ou' ox

OO Of, O ol ory
ou dx ou Ox ou dx \ou'/

af  of , of ,d ofy\

ax oY T ax “a(w)—o
d JOfN Of
U 50) 5% =
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Beltrami Identity

f
S~ 05s) ~ o =
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Beltrami Identity
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Brachistochrone

@ F = [dt, minF ...curve of the
shortest time.

° F:fds_fb\/H-(y ()2
e imv2 = mgy(x)=v=/2gy(x)
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Brachistochrone

@ F = [dt, minF ...curve of the
shortest time.

= [ % = Jy YO ax

e imv2 = mgy(x)=v=/2gy(x)

° F/\/T
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Brachistochrone
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Brachistochrone

/ 12
fly.y) = YLV %};)

f— y’aa;/ = C Beltrami identity
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Brachistochrone

/ 12
fly.y) = YLV %};)

f— y’aa;/ = C Beltrami identity
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Brachistochrone

/ 12
fly.y) = YLV %};)

f— y’aa;/ = C Beltrami identity

1
N2y _ _
YO+ ) = 5ez =k
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Brachistochrone

/ 12
f(y.y) = VYL %}; )

f— y’aa;/ = C Beltrami identity

1
N2y _ —
YO+ ) = 5ez =k
The solution is a cycloid

2

Variational Methods

2 A
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Cycloid

o
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

;F(u+av) = /(-)dxdy+/
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

0 of of
gF(quav) = /(-)dxder/(99 [8uxn1 + 8Uyn‘2] vds

@ Dirichlet b.c.
u is predefined at the boundary 02 — v(9Q2) =0
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

3} of of
gF(quav) = /(-)dxder/(99 [um + ung] vds

@ Dirichlet b.c.

u is predefined at the boundary 02 — v(9Q2) =0
@ Neumann b.c.

derivative in the direction of normal % =0
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

3} of of
gF(quav) = /(-)dxder/(99 [um + ung] vds

@ Dirichlet b.c.

u is predefined at the boundary 02 — v(9Q2) =0
@ Neumann b.c.

derivative in the direction of normal % =0

Consider F(u) = [q 3|Vul? = [ 3(uZ + u?)
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

3} of of
gF(quav) = /(-)dxder/(99 [um + ung] vds

@ Dirichlet b.c.

u is predefined at the boundary 02 — v(9Q2) =0
@ Neumann b.c.

derivative in the direction of normal % =0

Consider F(u) = [q 3|Vul? = [ 3(uZ + u?)
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Boundary conditions

@ using “per partes” on u(x, y), n(x,y) = [n(x,y), n2(x, y)]
normal vector at the boundary 992

gsF(u+av):/(-)dxdy+/

@ Dirichlet b.c.

u is predefined at the boundary 02 — v(9Q2) =0
@ Neumann b.c.

derivative in the direction of normal % =0

Consider F(u) = [q 3|Vul? = [ 3(uZ + u?)

of of __

auy — Uxs uy Uy

of of _ Ou _ H
u; M + gy, M2 = UxM + Uynz = 55 =0 FH
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E-L equation example

@ Smoothing functional:

’
F(u):2/Q|Vu|2dx, f=uf+uj
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E-L equation example

@ Smoothing functional:
1
F(u) = / IVulPax, f=uf+u]
2 Ja

@ E-L equation:

F/(U) — _AU - _UXX - Uyy
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E-L equation example

@ Smoothing functional:
1
F(u) = / IVulPax, f=uf+u]
2 Ja

@ E-L equation:
F/(U) - _AU - _UXX - Uyy

Laplace equation
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/uz+u2
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/uz+u2

@ E-L equation:

of _d ot _dof
ou dxoduy dyoaduy

Variational Methods



Introduction Motivation E-L PDE

More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/uz+u2

@ E-L equation:

of _d ot _dof
ou dxoduy dyoaduy

4 49 W _div( VU)
VO Y N [Vl
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/uz+u2
@ E-L equation:
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/uz+u2
@ E-L equation:
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Outline

Q Introduction

@ Variational Problem and P.D.E.
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkr1 = Xk — og' (Xk)

where « is the step length
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkr1 = Xk — og' (Xk)
where « is the step length

\g(x)

. 4
X nEAE

¥

Variational Methods
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0

@ Imagine, analytical solution is impossible.

@ Let us walk in the direction opposite to the gradient
Xkt = Xk — g’ (X) ,

where « is the step length

\g(x)
AN
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0

@ Imagine, analytical solution is impossible.

@ Let us walk in the direction opposite to the gradient
Xkt = Xk — g’ (X) ,

where « is the step length

\g(x)
AN

N
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Steepest Descent

@ Classical optimization problem

g:R— R,)”(:mxing(x)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkr1 = Xk — og' (Xk)
where « is the step length

\g(x)
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Steepest Descent

@ Vo
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Steepest Descent

° v Xk+1 — Xk /
ST~ g (x0).
@ Define x(t) as a function of time such that x(#x) = xx and
ki1 =tk +
d);(tk) ~ iim X(t + Oto)é —x(t) _ im Xk+1a— X _g(x)
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Steepest Descent

° v Xk+1 — Xk /
ST~ g (x0).
@ Define x(t) as a function of time such that x(#x) = xx and
ki1 =tk +
Z);(tk) ~ iim X(t + Oto)é —x(t) _ im Xk+1a— X _g(x)

@ Finding the solution with the steepest-descent method is
equivalent to solving P.D.E.:

ax

a —g'(x)
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P.D.E

@ Variational problem
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P.D.E

@ Variational problem

@ Must satisfy E-L equation

= F(i)=0
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P.D.E

@ Variational problem

@ Must satisfy E-L equation
= F(i)=0
@ Find the solution with the steepest-descent method
Ukt1 = Uk — aF'(u),

where « is the step length and must be determined
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P.D.E

@ Variational problem

@ Must satisfy E-L equation
= F(i)=0
@ Find the solution with the steepest-descent method
Ukt1 = Uk — aF'(u),

where « is the step length and must be determined

@ Vo

Ug1 — Uk o _F/(Uk)
- )

@ HH

Variational Methods
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P.D.E

@ Make v also function of time, i.e., u(x, t)
Uk(X) = U(X, Tk)
and t1 =t +

. Uky1— U, _Ou
im —/—— = —(x,
a—0 (0% 8t( ’ k)
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P.D.E

@ Make v also function of time, i.e., u(x, t)
Uk(X) = U(X, Tk)

and t1 =t +

Uks1 — Uk _ OU

lim = E(X, f)

a—0 0}

@ Solving the variational problem with the steepest-descent
method is equivalent to solving P.D.E.:

ou
- _F
ot (w)

-+boundary conditions.

Variational Methods
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Steepest descent

\q(x)
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Steepest descent
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Steepest descent
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Steepest descent
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Steepest descent
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Steepest descent

\%’(x) u(x)
T
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Steepest descent

\%’(x) u(x)
\
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Differential Calculus x Variational Calculus

H Differential Calculus | Variational Calculus

Problem Spec. function functlop of function
= functional
Necess. Cond. 1st derivative = 0 1st variation =0
Result one number (or vector) function
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

°
u+ F'(uy=0 < minF(u)
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

u+ F'(uy=0 < minF(u)

u=~A4Au & min/]Vu]2
Q

@ Does every PDE have its corresponding optimization
problem?
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