

Hough Transform from bubbles through straight lines to arbitrary shapes

ZOI – UTIA

Adam Novozámský (novozamsky@utia.cas.cz)

Beginning

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959.

Beginning

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

11	H	アニト	1 11	١	١				
	1 11	こち	# 11	1	Y1				
	101	VI	1 4	1	11	Y			
1	11	Λ Λ	* 1		11	1\	1		
١	11	111	14	1 Y	11	7	1/1		
1	111	111	1 //	1 11	11	· · ·	17		
١	1 11	1 1 1	1 11	1 11	1	<u>\</u>	11	N	
١	1 1 1	11	XI	1 1	١	1 1	V	>	
4	111	11	1/11	111 1	1	XI	λ	~	
	11	1 /1	1 1	11 1		11	11		
	11/	X ۱		11	١	V1	1		1
1	11	11	11	11 11	1	11/		1	1
	1	14	11	11 11	١	>		ł	11
	N 1/	11	11	11 11	11	*		1	11
	11 11	11	11	11 11	X	1	~		11
	× I		11	1 1	11	١		+	H
	< N	11	1 1	1/	11	1	1	Ì	1
N /	h	1 11	11	1	1 1	1	N 1/	1 1	1
121	1 //	1 11	11	/ //	1 1	1	M.	1 1	1
ri v	h	• •	X X	/ //	4 17	1	11	1 1	1
11 .	"	11	1×1	1 1	N	L F	11		
11	1 1	1	X	1	4 4	1 1	1		11
"	<u>\</u>		11	11	I I	11	1	1	11
4	<u> </u>	1 1	11	11	N I	11	1	\mathbf{N}	11
1		K I	1	11	W 1/	11	1	\ \	/I
11	1 /	11/	"	11	N A	141	1111	\setminus \setminus	1
<u> </u>	X	11 \	1 11	11	111	11	11	1	
	<u> </u>	11	1 11	41	11	N IV	1.		
1/1		H	フニ	11	"	1 11	IIN		
×	1	11	11	11	W	1 11			
1	1	11	1 >	1 4	N	1			
Λ.	11	1	1	11	1	11			
-									

FRAMELET

slope-intercept HT

8/24

Azriel Rosenfeld 1969

• gave the first explicit algebraic form for the transform:

 $y = y_i x + x_i$

• proposed a simple digital implementation of the transform space as an array of counters

introduced to the computer science community this idea

• Shakey the robot [1966-1972]

- SRI nonprofit scientific research institute
- Artificial Intelligence Center

Richard O. Duda and Peter E. Hart, Use of the Hough transformation to detect lines and curves in pictures, Commun. ACM 15, 1, 1972.

 $\rho = x\cos\theta + y\sin\theta$

- **Property 1:** A point in the picture plane corresponds to a sinusoidal curve in the parameter plane.
- **Property 2:** A point in the parameter plane corresponds to a straight line in the picture plane.
- **Property 3:** Points lying on the same straight line in the picture plane correspond to curves through a common point in the parameter plane.
- **Property 4:** Points lying on the same curve in the parameter plane correspond to lines through the same point in the picture plane.

demonstration of the algorithm

An illustrative example

An illustrative example

0	0°	20⁵	40°	60°	80°	100=	120	140°	160°	Ē		0°	20°	40°	60°	80°	100*	120*	140°	160°
85 83							1	2 2		-85 -83										
81							4	4		-81										
79			2				6	5		- 79				3	1					
77				2			8	4	2	- 77				1	3					
75							6	6	2	-75										
73							4	3	3	-73										
71		2		1		1	4	2	3	-71			2							
69			1	4		12	4	3	5	- 69			2							
67			3		2	14	2	3	4	-67										
65			1			11	1	2	4	-65				1	2					
63					5	2		2	4	-63			1			2				
61						1		3	9	-61		5								
59	4	1			11	9	1	8	12	- 59		7		2	1		1			•
57	4	3		3	10	12	3	10	15	- 57		6		_			2	1		4
55	9	5		4	5	4	5	11	12	- 55		0	10	6			1	1		4
53	6	6		4	10		11	9	14	-53		16	13	12		18	4	1		ç
51	4	9		4	20	2	11	10	8	-51	e	Đ	15	11	\bigcirc	15	10			6
49	5	6		2	10	3	11	13	8	- 49	3	\$2	18		୍ର	12	23	21	1	5
47	8	4	4	4		2	13	10	10	-47	1	0	16	11	22	14	16	ä	21	2
45	4	7	14	3			11	6	8	-45		7	17	11	11	16	18	۹Ũ	21	6
43	4	18	21	5		1	12	10	8	-43		8	12	14	10	13	17	12	10	12
41	9	17	21	15		25	18	.7	8	-41		6	7	14	11	14	14		19	12
39	8	20	21	13		22	11	11	7	- 39		2	10		8	12	°.	11	10	23
37	2	17	22	17		9	10	9	10	-37		/ a		14	°	10	7	10	22	24
35 🤤	99	14	17	17	38	8	7	9	6	-35		ĉ	12	1/	8	10	6	11	23	25
33 3	57	16	22	21	<u>و</u> به	10		9	.9	- 33		6	12	10	°.	12		16	18	15
31 3	5	11	21	23	23	8	11	9	10	51		0	10	19	9	0		18	18	15
29 1	3	18	18	23	20	14	13	9	4	- 29		7	10	10	8	6	á	18	19	19
27	4	10	12	20	20	20	。 。	7	0			ś	10	8	8	7	7	22	9	14
25	<i>'</i>	10	12	32	17	á	11	6	2	-23		6	11	å	å	6	11	19	12	9
23	0 7	12	12	20		4	15	11	10	23		7	15	á	7	10	10	16	10	11
21	6	17	12	25	~	7	1.4	6	7			6	13	8	16	'ě	11	17	9	10
19	2	14	12	16	é	, 0	16	12	2	-17		7	17	õ	15	7	ii ii	16	14	13
17	9 0	12	12	10	7	10	16	14	10	-15		6	15	10	17	8	13	10	14	9
13 1	° n	0	15	11	2	10	16	13	6	-13	1	ŏ	15	9	15	9	17	11	13	12
11 1	<u>,</u>	11	13	14	ക്	10	16	13	13	11	i	0	13	10	7	8	17	9	11	15
Q 1	ñ	10	16	14	S.	- Q	14	21	22	-9		7	14	8	7	8	23	8	12	15
7 1	õ		22	12	എ്	6	7	12	21	-7		9	15	12	7	8	21	7	13	12
5 1	ĩ	12	15	ñ	23	6	11	14	14	- 5	6	3	13	15	9	7	14	10	12	15
3 1	3	15	15	8	18	ž	11	16	15	-3	2	6	14	14	6	8	12	9	11	18
1 1	0	14	17	ň	7	8	9	10	12	-1	1	0	13	18	9	8	8	11	12	15

16/24

Duda & Hart • Rotation

Duda & HartTranslation

• Translation

Limitations of the HT

 \circ sensitive to the quantization of both heta and ho

- Finer quantization gives better resolution
 - increases the computation time
 - exposes the problem with nearly collinear points
- technique finds collinear points without regard to contiguity
 - meaningless groups of collinear points being detected

Duda & Hart Limitations of the HT

Duda & Hart Limitations of the HT

Zhen Wang and Ghassan AlRegib, Automatic fault surface detection by using 3D Hough transform, SEG Technical Program Expanded Abstracts 2014, p. 1439-1444, 2014.

Muff Parametrization

bounding rectangle around the image

Wallace,R.: A modified Hough transform for lines. In: Proceedings of CVPR 1985,pp.665-667, 1985.

Forman Parameterization

bounding rectangle around the image

Forman, A.V.: A modified Hough transform for detecting lines in digital imagery. Appl. Artif. Intell. III, 151–160, 1986

Fan-Beam Parameterization

bounding circle around the image

Eckhardt, U., Maderlechner, G.: Application of the projected Hough transform in picture processing. In: Proceedings of the 4th International Conference on Pattern Recognition, pp. 370–379. Springer, London, UK, 1988

Circle Transform

Circle Transform

Problem: the number of votes is much higher by origin than in the rest of the accumulator space

HT for Analytic Curve

f(x, a) = 0
x ...image point
a ...parameter vector

Analytic form	Parameters	Equation								
Line	ho , $ heta$	$x\cos\theta + y\sin\theta = \rho$								
Circle	a, b, p	$(x-a)^2 + (y-b)^2 = \rho^2$								
Parabola	a, b, ρ_x, θ	$(y-b)^2 = 2\rho_x(x-a)^*$								
Ellipse	$a, b, \rho_x, \rho_y, \theta$	$\frac{(x-a)^2}{{\rho_x}^2} + \frac{(y-b)^2}{{\rho_y}^2} = 1^*$								
* Plus rotation by θ										

HT for Analytic Curve – Circle [Duda&Hart 1972]

Unknown radius ρ

$$(x-a)^2 + (y-b)^2 = \rho^2$$

Unknown radius ρ

$$(x-a)^2 + (y-b)^2 = \rho^2$$

[Ballard 1981]

HT for Analytic Curve – Circle [Ballard 1981]

Known radius ρ

$$(x-a)^2 + (y-b)^2 = \rho^2$$

Image space

Hough space

Known radius ρ

Image space

Hough space

Thresholding & Canny detector

Known radius ρ

Image space

Hough space

Thresholding & Canny detector

Known radius ρ

Image space

Hough space

Thresholding & Canny detector

Known radius ρ

Image space

Hough space

Thresholding & Canny detector

Known radius ρ

Image space

Hough space

Thresholding & Canny detector

HT for Analytic Curve – Circle [Ballard 1981]

Unknown radius ρ **Known directional information of the edge**

$$(x-a)^2 + (y-b)^2 = \rho^2$$

HT for Analytic Curve – Circle [Ballard 1981]

Unknown radius ρ **Known directional information of the edge**

$$(x-a)^2 + (y-b)^2 = \rho^2$$

in a specific orientation and size

P. M. Merlin and D. J. Farber, "A Parallel Mechanism for Detecting Curves in Pictures," in IEEE Transactions on Computers, vol. C-24, no. 1, pp. 96-98, Jan. 1975.

Image space

Hough space

[Merlin 1975]

in a specific orientation and size

Image space

Hough space

X

in a specific orientation and size

y xi Vi

x

y

Hough space

Ś

Image space

X

in a specific orientation and size

[Merlin 1975]

y xi Xi Vi

x

y

x

Image space

Hough space

in a specific orientation and size

y x_i y_i y_i xx

Image space

[Merlin 1975]

in a specific orientation and size

[Merlin 1975]

Image space

Hough space

in a specific orientation and size

Image space

Hough space

[Merlin 1975]

in a specific orientation and size

- We can summarize the algorithm as follows:
- 1. Mark a reference point called *A* in the given curve.
- 2. Rotate the given curve 180°.
- 3. Trace the rotated curve with *A* on each of the points of the picture.
- 4. Find the point where the maximum number of curves traced in Step 3 intersect.
- 5. The best fit to the given curve is the trace with A on the point found in Step 4.
- Most of the computation time is spent in Step 3.
 - the same curve for all the points \rightarrow **parallel**

[Merlin 1975]

in a specific orientation and size

Image space

Hough space (log)

Thresholding & Morphological operations & Canny detector

Detected objects

Why not CONV or NCC?

• Fast Normalized Cross-Correlation (NCC)

John P. Lewis, "Fast Normalized Cross-Correlation" (1995).

[Merlin 1975]

in a specific orientation and size – with occlusion

Image space

Hough space (log)

Thresholding & Morphological operations & Canny detector

Detected objects

Why not CONV or NCC?

• Fast Normalized Cross-Correlation (NCC)

John P. Lewis, "Fast Normalized Cross-Correlation" (1995).

[Merlin 1975]

in a specific orientation and size – with occlusion + different edge detectors

detected edges in image

detected edges in template

[Merlin 1975]

in a specific orientation and size – with occlusion + different edge detectors

Image space

Hough space (log)

Thresholding & Morphological operations & Canny detector

Detected objects

[Merlin 1975]

in a specific orientation and size – with AWGN $\mathcal{N}(0,0.02)$

Image space

Thresholding & Morphological operations & Canny detector

Detected objects

in a specific orientation and size – with AWGN $\mathcal{N}(0,\!0.02)$

Template – 215x254 px

D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognition, Volume 13, Issue 2, 1981.

[Ballard 1975]

R-table	
•••	•••
ϕ_a	$r_{1}^{a}, r_{2}^{a},, r_{m_{a}}^{a}$
•••	•••
ϕ_b	$r_{1}^{b}, r_{2}^{b},, r_{m_{b}}^{b}$
•••	•••
ϕ_c	$r_{1}^{c}, r_{2}^{c},, r_{m_{c}}^{c}$
•••	•••

 $centroid = [x_c, y_c]$ $r_k^i = [x_k^i, y_k^i]$ $x_c = x_j + x_k^i$ $y_c = y_j + y_k^i$

[Ballard 1975]

Image space

[Ballard 1975]

 $\tan \phi = \frac{dy}{dx}$

Dy=imfilter(double(Img), [1; -1], 'same'); Dx=imfilter(double(Img), [1 -1], 'same'); Fi=mod(atan2(Dy, Dx)+pi, pi);

in a specific orientation and size

Thresholding & Morphological operations & Canny detector

Image space

Hough space (log)

4

Detected objects

in an arbitrary orientation and certain range of size

• Scale by s: $T_s[R(\phi)] = sR(\phi)$ all vectors scaled by s

• Rotation by θ : $T_{\theta}[R(\phi)] = Rot\{R[(\phi - \theta)mod2\pi], \theta\}$ all the indices are incremented by $-\theta \mod 2\pi$ the appropriate vectors r are found and then rotated by θ

in an arbitrary orientation and certain range of size

in an arbitrary orientation and certain range of size

DEMO

inhomogeneous discretization of the unbounded parameter space (a, b)-space is split into three subspaces on the interval [-1,1]

[Tuytelaars 1997] Application - Detection of vanishing points and lines

1.HT

vanishing points

2.HT

3.HT

vanishing lines

[Tuytelaars 1997] Application - Detection of vanishing points and lines

Lines belonging to one of the three main directions

Application - Detection of vanishing points and lines

HT is used to find vanishing point and rectify building image

https://github.com/link2xt/fht/blob/master/README.md

Application - Image matching by GHT

Image source Image template

800 x 600

64 x 64

Image source

256 x 256 with noise

Image template

64 x 64

Method	time [ms]	time [ms]
GHT	40.1	5.0
Sum of absolute difference (SAD)	12107.4	1151.7
normalized cross- correlation NCC	26658.3	2543.6
Qiang Li and Bo Zhang, transform, IADIS AC (2005)	, Image matching und).	der generalized hough

Thank you for attention!

ZOI – UTIA

Adam Novozámský (novozamsky@utia.cas.cz)

