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Abstract

In our paper, we present a performance evaluation of image segmen-
tation algorithms on microscopic image data. In spite of the existence of
many algorithms for image data partitioning, there is no universal and
”the best” method yet. Moreover, images of microscopic samples can be
of various character and quality which can negatively influence the per-
formance of image segmentation algorithms. Thus the issue of selecting
suitable method for a given set of image data is of big interest. We car-
ried out a large number of experiments with a variety of segmentation
methods to evaluate the behavior of individual approaches on the testing
data set. The segmentation results were assessed by several indices used
for measuring the output quality of image segmentation algorithms. In
the end, the benefit of segmentation combination approach is studied and
applicability of achieved results on related image data is shown.

1 Introduction

The fundamental objective of image segmentation is to partition the input image
into meaningful non-overlapping regions — segments — for further analysis or
visualization. There is a variety of approaches addressing this task, exploiting
various image properties to achieve the given goal (see e.g. [35] for survey). They
span from low-level techniques using intensity thresholds, edge tracing or region
growing, over graph-based and statistical approaches, to model-based algorithms
and other higher-level methods. Recently, the combination-based solution has
been introduced, where the final partition is formed using a combination of
results of several segmentation methods and thus inhibiting their shortcomings.

Despite the longtime effort to develop high quality segmentation algorithms,
there has not been any universal segmentation method proposed. Under these
circumstances, there is a dilemma which method to choose for given particular
data set and whether the combination of segmentation results would be bene-
ficial. Our article tries to answer these questions for defined category of image
processing data — set of images of microscopic samples (see figure 1), moreover



(a) VIS image (b) UV image (c) SEM image

Figure 1: The images of the cross-section samples are acquired in three modali-
ties — visible spectrum (VIS), ultraviolet spectrum (UV) and scanning electron
microscope (SEM)

taken in different modalities. From the image processing point of view, the ori-
gin of the samples often does not play an important role. The factual meaning
of particular intensity levels can be irrelevant for the segmentation algorithm.

We limit our study to the microscopic image data that contain the sample
located in the inner part of the image, mostly not reaching to the top and bottom
image borders. The data may come from an analysis of painting materials
used in art restoration (figure 1), which is the case of the data set used in
our evaluation. They can be samples of various biological materials, such as
tissues, cells, or other biological structures. The task at hand can be seen as
the two-target problem where an image has to be labeled with either foreground
or background label and where the foreground is usually the inner part of the
image and the background is separated and/or removed. The problem can be
viewed as image binarization, too.

At first glance it might seem to be a simple task solvable by means of basic
thresholding, however the situation is often more complex. Due to the setting of
data collection process, acquired images are often unfit to the chosen segmenta-
tion method and following complications are usually inevitable — surroundings of
analyzed samples can be semitransparent, with non-uniform cutting-plane and
various debris, to name a few examples. High number of samples can negatively
influence precision of sample scanning in terms of noise level and blurring.

The objective of the paper is to evaluate the non-interactive segmentation
methods in terms of their accuracy, assessed by several indices used for mea-
suring the output quality of image segmentation algorithms. Furthermore, ef-
ficiency of combination of segmentation results is addressed, too. Finally, the
applicability of the achieved conclusions is demonstrated on different data set
— the biological samples. Section 2 introduces the participating methods and
indices. The full explanation of the analyzed methods is out of the scope of
our paper. If necessary, please consult given references. Section 3 forms the
key part of this paper with evaluation and comparison of the image segmen-
tation algorithms. Insight into their performance and guidelines for their use
are given there. Section 4 presents exploitation of the results for achieving even
better segmentation output via combination and also application to different
data. The paper is concluded in section 5.



Segmentation methods
IMJ_* Various thresholding methods from ImageJ [10-21]

HT_* Various thresholding methods from HistThresh [11,12,15-17,22-24]
TNC Tao’s thresholding method [25]

RG Region growing [9]

KM K-means clustering [7]

MS Mean Shift algorithm [8]

GC_FH | Felzenszwalb’s method [1]

GCR GrabCut [2]

GC_CV | Danék’s optimization of Chan-Vese [3,4]
GC_RD | Daneék’s optimization of Rousson-Deriche [3, 5]
MNC Multiscale normalized cut [6]

Quality indices

HD Hamming distance [26]

BHD Boundary Hamming distance [27]
RI Rand index [28]

ARI Adjusted Rand index [29]

DC Dice coefficient [30]

FMI Fowlkes-Mallows index [31]

NMI Normalized mutual information [32]
VI Variation of information [33]

HAUSD | Hausdorff distance [34]
MASD Mean absolute surface distance [34]

Table 1: List of image segmentation methods in studied set and of quality indices
used for their comparison. The abbreviations widely used in text are in the first
column.

2 Segmentation algorithms and quality indices

First, a survey of the image segmentation algorithms analyzed in this paper (i.e.
studied set) is presented. The second part focuses on indices used for measuring
the output quality of the image segmentation algorithms. The abbreviations
are assigned to each method and index for future references and their list is
presented in table 1.

2.1 Segmentation algorithms

There is a variety of segmentation methods available to be used to solve the
image segmentation problem which differ in many ways (see e.g. [35] for sur-
vey). The algorithms in our study are selected with respect to the following
criteria. Methods with different fundamentals are considered to provide a di-
versity. The performance and computational (time) efficiency are taken into
account with preference for short execution time. Finally, the public avail-
ability of the implementation and thus related popularity of the segmentation
method are considered too. Last criterion is also important because it can be
expected that potential users of image segmentation algorithms would choose
exactly such popular methods. There exists a lot more segmentation algorithms
(e.g. [36-38]) but inclusion of each of them is beyond the scope of this paper.

The selected algorithms can be divided into groups according to their fun-
damental approach to solve the image segmentation problem. The following
paragraphs briefly describe the groups and particular algorithms.



Thresholding

Thresholding is probably the most popular method for image segmentation.
The aim is to find an optimum threshold which separates the input image to
two distinct groups of pixels by their intensity. Plenty of different methods for
threshold detection exist and many of them are selected to participate in the
evaluation.

The methods of the Auto Threshold plugin' for ImageJ software package? are
included. Namely Huang method (IMJ_HUANG) [10] which minimizes the mea-
sures of background/foreground fuzziness, Intermodes (IMJ_IM) [11] with itera-
tive histogram smoothing, Isodata (IMJ_ISO) [12] and its variation (IMJ_DEF)
which iteratively update the threshold according to background and foreground
intensity means, Li’s method (IMJ_LI) [13] for cross entropy minimization,
Kapur—-Sahoo-Wong maximum entropy method (IMJ_-MAXENT) [14], mean
of the gray levels as threshold (IMJ_MEAN), iterative version of minimum er-
ror thresholding (IMJ_IME) [15], minimum method (IMJ_-MIN) [11], moment-
preserving method (IMJ_-MOM) [16], Otsu’s method (IMJ_OTSU) [17] for min-
imizing the intra-class variance, percentile method (IMJ_PER) [18], method us-
ing Renyi’s entropy (IMJ_RENYT) [14], Shanbhag’s extension (IMJ_SB) [19] to
Kapur’s maximum entropy method, geometric Triangle algorithm (IMJ_.TRIANGLE) [20]
and Yen’s method (IMJ_YEN) [21] based on a maximum correlation criterion.

In addition to the plugin several other thresholding methods from MATLAB
HistThresh toolbox? are studied — concavity method by Rosenfeld (HT_CONCAV) [22],
Glasbey’s entropy method (HT_ENT) [23], maximum likelihood via EM algo-
rithm (HT_MAXLIK) [24], Intermeans (HT_INTER) as equivalent to Otsu’s
method and its iterative version (HT_INTERI) which is equivalent to IsoData
method mentioned above. Then there is median method (HT-MEDIAN) [23]
which assumes that half of the pixels belong to the background and other half to
the foreground, and non-iterative minimum error thresholding (HT_-ME) [15].

Finally, a Tao’s method for image thresholding (TNC) [25], which uses a nor-
malized graph-cut to detect an optimum threshold, is included in the evaluation
below.

Region growing

The region growing (RG) [9] is another common segmentation approach included
in our selection. The algorithm partitions the input image to segmented regions
by growing from the seed points (picked automatically or by the user) to the
neighboring pixels depending on a membership criterion such as intensity or
texture similarity.

Ihttp://fiji.sc/Auto_Threshold

’http://rsbweb.nih.gov/ij/

Shttp://www.cs.tut.fi/~ant/histthresh/

4There are more thresholding methods in the toolbox. Most of them are the same as in
ImageJ plugin. However we found out that their implementation often slightly differed and
so did the results of the segmentation. For this reason all methods are included in the studied
set with corresponding suffices in their abbreviations (so there are e.g. both IMJ_.MEAN and
HT_MEAN in the studied set).



Clustering methods

The goal of clustering methods is to group the input objects by their similarity or
dissimilarity with respect to a given criterion such as color, spatial coordinates
etc. K-means clustering and Mean Shift algorithm are selected representatives
of this approach.

K-means clustering (KM) [7] assigns the input objects to the clusters with
the nearest means which are iteratively updated. The method strongly depends
on the initialization and favors final clusters/segments of similar spatial extent.
The Mean Shift algorithm (MS) represents more complex approach. Comaniciu
and Meer [8] exploited the non-parametric mean shift procedure for detecting
multiple modes in a feature space in order to delineate the final clusters in such
space.

Graph-based algorithms

Graph-based image segmentation algorithms generally model the image as a
graph in which the nodes represent the pixels and the edges of the graph corre-
spond to some relation between pixels (usually their similarity or dissimilarity).
A graph partitioning method is then used to obtain final partition and by doing
so also the final segmentation of the input image.

In their paper [1] Felzenszwalb and Huttenlocher (GC_FH) introduced the
efficient greedy algorithm for partitioning an image graph to obtain a final seg-
mentation that is not too coarse or too fine given a dissimilarity predicate.
GrabCut algorithm by Rother et al. (GC_R) [2] uses graph cut optimization
technique (min-cut/max-flow algorithm) to minimize energy function derived
from an input image using intensity values®. The OpenCV® implementation of
this algorithm is examined. The graph cut minimization [3] of both Chan-Vese
active contour model for image segmentation (GC_CV) [4] and Rousson-Deriche
Bayesian model (GC_RD) [5] is included. A multiscale version of normalized
cut graph partitioning framework (MNC) [6] is considered too. The multiscale
adjustment added to the original algorithm by Shi and Malik [39] allows to
segment large images thanks to its computational efficiency.

2.2 Quality indices

Quality indices form the second important part of the evaluation. In order
to objectively evaluate the performance of the image segmentation methods
and quality of their results, the quality indices (or measures) are necessary to
adopt. The pursuit of objectivity is motivated by an effort to suppress the
subjective (and still often empirical) evaluation of the segmentation algorithms
in the original papers.

There exist two main approaches to design an objective measure — unsuper-
vised evaluation and supervised evaluation. The unsupervised quality indices do
not require comparison with any additional reference standard and their evalu-
ation is solely based on a given segmented image. These indices usually exploit

5 Although GrabCut is user interactive algorithm, its initialization can be done automati-
cally with no effort (see section 3.1). Interactivity is thus no handicap.
Shttp://www.opencv.org



such criteria as intra-region homogeneity, inter-region difference etc. For a sur-
vey of unsupervised evaluation methods see [40]. Conversely the supervised per-
formance evaluation approach requires the ground truth reference image (GT)
which the actual segmented image is compared to. The ground truth image
is often obtained manually by experts and reflects the optimum of the result-
ing segmentation. In our case the supervised evaluation is more appropriate
because of the better ability to distinguish the slight disparities between the
results of various segmentation algorithms thanks to the comparison with this
ideal ground truth.

The following sections present quality indices used in this article. They are
selected mainly to keep the diversity of the final set. On top of that they are
widely used in relevant papers. Each index usually favors certain properties of
the segmentation results and penalizes others (they are biased in this sense).
Therefore it is important to incorporate larger set of indices and handle their
possibly different evaluation of given segmented image in order to keep the
evaluation objective as much as possible. Only one or two indices would be
insufficient and would probably distort the results.

It is worth mentioning that there exist more quality indices than there are
described in this paper. Nevertheless a lot of them are equivalent to the ones
selected, like F-measure [41], Jaccard index [42] or Classification accuracy used
e.g. in [43]. Some are inappropriate for the task, e.g. LCE and GCE [44],
which try to deal with refinements in context of multilabel segmentation. We
assume that the indices are correct, i.e. their values are meaningful and not
random. The theoretical range of values is specified for each index”. In formulas
I denotes segmented image for which the quality index is computed, GT is
the corresponding ground truth, F' and B subscripts denote foreground and
background respectively.

Hamming distance

Hamming distance (HD) is well-known metric from the information theory [26].
Originally it counts differences between two strings. In image processing it
can be used to count the number of misclassified or missegmented pixels. The
distance is normalized with the total number of pixels and therefore the range
is in the interval of 0 and 1, where 0 is for absolute mismatch and 1 for equality
to the ground truth.

_ |IB ﬁGTF| + | Ir NGTg|
]

Huang and Dom introduced a variation called normalized Hamming dis-
tance [45], which can deal with multilabel and not only with binary segmenta-
tion. However in binary case Huang’s normalized version is equivalent to plain

Hamming distance®.

HD =1

7Extremities of the range do not necessarily have to be reached in practice.
8Except for the matching problem between segmented regions. See the paper [45] for
details.



Boundary Hamming distance

Boundary Hamming distance (BHD) introduced in [27] is the variation of Ham-
ming distance that stresses the accuracy of the segmentation result on an ob-
ject’s boundary. Kohli et al. argue that the ordinary Hamming distance is not
appropriate if the user is interested more in accurate object boundary (and so
in the accurate segmentation as well), because a large qualitative improvement
on the object border results in only a negligible increase of the performance
measure. The quality in boundary version is then evaluated by counting the
number of missegmented pixels in the region surrounding the object boundary
with the specified width. As with the previous case, the distance is normalized
and range is between 0 and 1.

BHD =1 — ‘IB N GTF'BOUNDARY + |IF N GTB|BOUNDARY
[BOUNDARY]|

In our case it makes sense to include both the Hamming distance and its
boundary version, because even though we are interested in fine object boundary
in the resulting image the complete missegmentation might happen and such
case is better reflected (and penalized) by common Hamming distance.

Rand index and Adjusted Rand index

Rand index (RI) [28] and Adjusted Rand index (ARI) [29] are quality indices
originally developed for comparing the clusterings. They are based on counting
pairs of objects which two clusterings agree or disagree on (which leads to what
is often called contingency table or confusion matrix). In the same manner they
can compare segmentation results to the ground truth.

mi; = |I; N GT}, i,j € {F, B}
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The adjusted Rand index corrects the original RI for chance agreement be-
tween two clusterings by normalizing RI with its expected value. The range of
RI (values between 0 and 1, where 0 is for absolute non-compliance with GT)
is thus corrected to the interval of -1 and 1. It is questionable if this correction
stays practical in the area of image segmentation where assumptions do not
have to hold, but experimental results [46] show that it is worth considering.

RI




ARI — 2(NT — PQ)
N(P+ Q) —2PQ
The RI and ARI are also in some sense equivalent to other well-known criteria

like Cohen’s Kappa statistic [47,48] or Mirkin’s metric [49], which is another
adjusted form of RI [33].

Dice coefficient

Dice coefficient (DC) [30] is popular quality index for evaluating the results of
image segmentation, especially in the medical imaging domain. Its range is
again from 0 to 1 (1 for perfect match with ground truth).

2|Ir NGTF|
DO = “LENSE]
11| +|GT|

Other indices are equivalent to Dice coefficient, e.g. Jaccard index [42] and
in binary case the popular F-measure [41].

Fowlkes-Mallows index

Fowlkes-Mallows index (FMI) [31] is another index based on the contingency
table. It has different properties than both RI and ARI mentioned earlier. It
handles the independent clusterings in a better way and behaves stably in the
presence of noise (see the original paper). As with the RI the range of this index
is between 0 and 1. The smaller the degree of missegmentation is the closer the
index is to 1.

T
Wy =
Yieqrpy | Ll (11l = 1)/2
T
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FMI = /W, Wy

Normalized mutual information

Mutual information is information theoretic index which measures the amount
of mutually shared information between two random variables (i.e. partitions
or segmented images in our case). The more the segmented result resembles
the ground truth the more information is shared. Since the mutual information
has no argument-independent upper bound, Strehl and Ghosh [32] normalized
it using the geometric mean of the entropies. The normalized version (NMI)
thus ranges from 0 to 1 with 1 for equality to the ground truth.

MI(I,GT)
VH(D)H(GT) '

where MI1(I,GT) denotes the mutual information between I and GT', and H(I)
denotes the entropy of I.

NMI =



Variation of information

The variation of information (VI) [33] is distance metric derived from the mutual
information. Contrary to the mutual information it measures the amount of
information (or entropy) which is not shared between two random variables. It
would seem that VI is only a complement of NMI and their results would be
equivalent. Comparison of the results however shows that they may differ, so
both indices are used in evaluation. The non-normalized version of VI is used
with values 0 for absolute match to the ground truth and positive values for the
opposite.

VI = H(I) + H(GT) — 2MI(I,GT)

Hausdorff distance and Mean absolute surface distance

Two last indices take the boundary of the segmented foreground into account.
Hausdorff distance (HAUSD) measures the largest minimal distance between
two boundaries. Mean absolute surface distance (MASD) measures the average
minimal distance between two boundaries (e.g. [34]). Both indices are sym-
metric and their values approach 0 with increasing resemblance between the
segmented image and the ground truth. Both are directly connected to the
distance distribution signature [45].

dmin (X, Bj) = min {dg(x,y)ly € B;},

where dg(x,y) denotes the Euclidean distance between points x and y, B;
denotes set of boundary points of either I or GT'. So dmin (X, B;) is the minimum
distance of a point x (for example on boundary B;) to boundary B;.

h(Br, Bar) = max {dmin (X, Ber)|x € Br}

HAUSD = max {h(B[, BGT), h(BGT, B[)}
1. -
MASD = 3 [dinin(Br, Bar) + dmin(Bar, Br)]

, where dpin(Br, Bgr) denotes average (minimum) distance from all points x
from B to Bgr.

3 Algorithms evaluation

The study of image segmentation algorithms performance is presented in this
section. First, few remarks connected to the input data set and experimental
setup are made. They are necessary to correctly interpret the results. Then
the evaluation is carried out which mainly consists of answering two important
questions — whether there is such segmentation method that would outperform
the others in the studied set, and (if not) whether it is possible to choose method
that is sufficiently good in the majority of cases. In final part (section 3.4) the
results are analyzed in more detail and the generally applicable recommenda-
tions concerning the performance of the algorithms are proposed.



3.1 The input data set and evaluation setup

The algorithms for image segmentation in this paper are evaluated on a data
set of the cross-section images of the artworks. They origin from the painting
restoration process in which the minute samples are taken away from the art-
work, embedded in polyester resin, grounded at a right angle to a surface plane
and ground to expose the painting layers. Afterwards the samples are captured
in three modalities — visible (VIS) and ultraviolet (UV), complemented with a
study under scanning electron microscope (SEM). The images come from the
Academic Materials Research Laboratory of Painted Artworks (ALMA)?, where
they help the art restorers to choose the proper materials and appropriate tech-
nique for the very restoration. The images do not always form the triplet (SEM
modality is often missing). There are 148 VIS images, 148 UV images and 89
SEM images. The SEM images are grayscale, the other two modalities are in
RGB colorspace. This also permits to evaluate the performance of the image
segmentation algorithms in different colorspaces (or their subspaces) like LUV
or LAB [9]1°.

Some of the artifacts, which are present in the cross-section images and make
their segmentation difficult, can be diminished. The polyester resin, which the
minute sample is embedded in, has to be ground by fine sandpaper to expose the
painting layers. The grinding produces the artifacts in the captured image in the
form of omnipresent parallel lines which have undesired impact on outcome of
specific image segmentation methods. The method for removal of such artifacts
is based on the Fourier transform and makes use of the distinct properties of
the artifacts. For details see [50]. The removal of the artifacts may improve the
performance of the image segmentation methods evaluated in this paper (see
figure 2). A study was conducted to find out which segmentation methods from
the set are liable to grinding artifacts. The original or preprocessed image is
used as an input for different segmentation methods in the following sections
according to the study findings.

Next remark regarding the input data set concerns ground truth images as
the reference standard for the evaluation of the image segmentation algorithms
performance. They were obtained manually for each image in the input data set.
The delineation of the sample boundary (i.e. the foreground) is a troublesome
process even for the art restorer because of the difficulties mentioned earlier. The
object boundary is not always clear. Sometimes the top or the bottom material
layer is not even visible because the lack of contrast to the background. However
the final binary masks produced in cooperation with ALMA represent suitable
reference standard.

The second group of remarks is dedicated to the algorithms’ parameters set-
ting and their initialization. The behavior and so the output of the selected
image segmentation algorithms can be considerably influenced by various set-
ting of their input parameters. The parameters of some methods are plainly
interpretable and as such they can be adjusted appropriately to obtain the best
results. For the rest the experiments with different sets of parameters were
performed and the parameter set with the best output was selected. The same

http://www.alma-lab.cz

ONaturally this applies only to UV and VIS images. SEM images are processed as grayscale.
Also not every colorspace or its subspace is used for every segmentation method. Only those
with meaningful results are included in the studied set.
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(c) Binarized SEM image (d) Binarized enhanced SEM image

Figure 2: The background artifacts might influence the outcome of the segmen-
tation algorithm. In (a) there is a image with the artifacts, in (b) the image
is after enhancement (artifacts are removed). Figures (c) and (d) illustrate the
influence of artifacts (non)presence on segmentation method.
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goes for the parameter of BHD quality index, which is the only quality index
with parameter.

The second issue is the initialization of some segmentation methods. For
example the region growing demands the indication of the initial seed points.
Considering the properties of the images the pixels with the most typical in-
tensity on the border of the image (i.e. the mode) can be taken as the seed
points. The algorithm then groups the pixels similar to the seeds by intensity
with given tolerance (given as a parameter and added to the abbreviation, e.g.
RG_25. There are 7 different parameters used in the studied set). The Grabcut
algorithm requires user initialization in the form a rectangle with a potential
foreground inside. This task is done automatically in our case and the rectangle
is set to cover the most of the image except for the narrow band of pixels around
the image border.

Finally, the aim is to obtain the final masks without small noisy regions
in the background and with the smooth border of the foreground. Hence, the
resulting binary masks after the segmentation are slightly post-processed using
mathematical morphology.

3.2 Single best segmentation method

The goal of this subsection is to find out whether there is such image segmenta-
tion method in studied group of methods that solely outperforms the others in
processing the input images in terms of quality. That means if there is method
which gives better segmentation result for significant majority of images (or
for each image in extreme case) in the data set than every other method in
the group. If so, use of such method would be of general preference to solve
background removal problem of similar data.

To study prevalence of any method first we need to denote the best segmen-
tation algorithm for every image in input data set separately (see algorithm 1 for
pseudocode). Ten quality indices (described in section 2.2) have to be computed
for every such image and every segmentation algorithm. Then the algorithm
with the best result may be picked by each index for each image. It is the
algorithm with the best correspondence to the respective ground truth, so the
algorithm with maximum (or minimum) index value is picked. After this, there
are ten possibly different segmentation methods selected by each quality index
for every image. To obtain single decision for every image some combination
rule has to be applied. Since the quality indices can be interpreted as ten dif-
ferent voters, voting rules can be successfully used in this situation. In our
case the relative majority rule is considered. It means that for every image
the segmentation method which is the most frequently selected as the best one
by individual indices is the best segmentation method for the particular image
overall. This gives us the best segmentation method for every image in input
data set.

It would be useful to verify that the best segmentation method selected by
quality indices according to the described procedure is also visually the best
segmentation method from the set available for each image. Therefore visual
comparison of all the segmentation results for every image was performed with
extra focus on cases where the result of the selected best method was not too
close to the ground truth (we need to verify that there is no better result avail-
able). The analysis leads to conclusion that the quality indices behave correctly

12



Algorithm 1 Denotes the best segmentation algorithm for an image
Require: image I
for all @ from the set of quality indices do
result < empty vector
for all M from the set of segmentation methods do
compute () on the result of M on I to obtain value valg
result(M) < valg
end for
Mg < argmax{result(M)} {or min depending on the index}
M

end for
apply majority vote on all Mg to obtain MpggT
return MpgsT

in a vast majority of cases. The selected result is either one of the many proper
ones or it is the only viable output. If there is no satisfactory result of any
segmentation method, then the one visually most plausible is often selected.
However there are some cases where the indices (or majority vote) do not de-
cide entirely correctly. The selected result is not visually the best available
though it is very similar to it. In such cases the decision of the indices is usually
far from being unanimous. Each index may favor a different method and final
decision using majority vote would be supported by small number of indices.

In any case, we have the best segmentation method denoted for every image
in input data set. The key conclusion of this section is based on a distribution
of segmentation methods among the best methods selected by quality indices
and voting for each image. In this section we focus only on the most frequent
segmentation methods which have potential to be the best. Deeper analysis
with additional material is given in appendix A. The results are presented
separately for each modality. They naturally differ due to distinct character of
those modalities and their input images. This gives us opportunity to study
performance of the algorithms in different conditions.

The two most frequent segmentation methods in SEM modality are Felzen-
szwalb’s method (GC_FH) and region growing (with parameter equal to 5 —
RG_5) with 12 occurrences out of 89 possible (number of SEM images in total)
each among the best methods. The situation in UV modality is rather different.
Mean Shift (MS) is clearly the most successful method. It is better than any
other method in 34 cases out of 148 (the total number of UV or VIS images).
In VIS modality MS stays the most frequent among the best methods for each
image with 40 occurrences out of 148 possible. Nevertheless, the most frequent
segmentation methods outperform the others only in fraction of cases (13-27
percentage depending on modality).

Based on these facts we can say that there is no segmentation method which
significantly outperforms the other segmentation algorithms in the set. The use
of the most frequent method mentioned in previous paragraph (e.g. MS for
UV modality) for background removal in images similar to those in our data
set is not sufficient for achieving perfect results (see figure 3 for example of
an image where the best method does not perform that well). It is important
to keep in mind that potential user usually does not have the ground truth
images, so he cannot select the individual best method for every sole image.
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of RG_25

Figure 3: Demonstration that the selected best method is not perfect for all
images. The image in (a) is better segmented by region growing with parameter
25 (RG-25, in (d)) than Mean Shift (MS, in (c)) which is the best method in
VIS modality. RG does not perform nearly that well overall. In (b) there is a
ground truth image for reference.
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Additional conclusions can be made from the results. MS, GC_FH, GC_R and
MNC often perform well. But also more straightforward approaches such as
RG or thresholding can be used to achieve good results (see appendix A for
reasoning).

3.3 Best average segmentation methods

The evaluation in the previous section is not entirely fair. The focus was on
finding a segmentation method which was the best for significant majority of
images. There was no such method in the studied set. However what if there is
a method which is good enough (and not necessarily the best) for vast majority
of the images. We look for method which is comparable to the best method
in case of easy to segment images (majority methods can segment this image
with satisfactory results) and does not completely fail in case of worse images
(where most of the methods fail), i.e. the best average segmentation method.
Such method (if found) could be used as number one choice to solve the image
segmentation problem.

The starting point for the evaluation is the same as in the previous section.
The values of ten quality indices are computed for each image and segmenta-
tion method. However following steps differ from the previous procedure (see
algorithm 2). There are so many values as there are images for every pair of
quality index and image segmentation method. Median of these values is the
average performance of segmentation method according to the respective index.
The best average method is thus the method with the highest median (or the
lowest depending on the index). Finally the majority rule denotes the best av-
erage segmentation method as a consensus of all quality indices. The median is
preferred over the mean because vectors of numbers often contain several out-
liers which would distort the results inappropriately!'!. Table 2 shows median
values for each quality index and several selected segmentation methods in SEM
modality.

Felzenszwalb’s method (GC_FH) and Rousson-Deriche approach (GC_RD)
are the two best average methods for SEM modality (they were selected equally
by the indices). If we look on the problem of finding the best average segmenta-
tion method even in more detail and consider first five methods for each quality
index (assuming that the lists for each index are sorted by median values, thus by
performance), we can see that GC_FH and GC_RD occupy the first two positions
of almost every list (there is only one exception) in SEM modality (see table 3).
Considering the median values there is a noticeable gap between these two and
next methods in the list. This second cluster is formed by Chan-Vese approach
(GC_CV), Mean Shift (MS) and minimum error thresholding (IMJ_IME). Apart
from them there are several occurrences of region growing with parameters 10
and 15 on lower positions. MS holds its superiority in UV modality even as the
best average method. It is first for 9 out of 10 quality indices (only HAUSD
votes for GC_FH) with substantial performance gap from the second position
which is occupied almost only by GC_FH (except for HAUSD naturally). Two
colorspace versions of multiscale normalized cut (MNC, RGB and grayscale) fill

HQutlier means that segmentation method segments some image exceptionally well or
poorly. Outlier is the value of the quality index for such image. We are interested in av-
erage performance which has to be stable despite the outliers. That is why the median is
more suitable for the task.
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Quality indices

Segmentation BHD HD RI ARI VI
methods [0,1] [0,1] [0,1] [—1,1] [0,...)
GC_RD 0.84 (0.12) _ 0.98 (0.03) _ 0.96 (0.06) 0.90 (0.15) 0.29 (0.31)
GC_FH 0.82 (0.13)  0.98 (0.03)  0.96 (0.06) 0.90 (0.20) 0.28 (0.24)
MS 0.82 (0.14)  0.97 (0.04)  0.95 (0.08) 0.88 (0.23) 0.33 (0.34)
co.cv 0.84 (0.14)  0.97 (0.06)  0.95 (0.11) 0.88 (0.31) 0.32 (0.37)
IMJ_IME 0.81 (0.14)  0.97 (0.04)  0.94 (0.07) 0.89 (0.20) 0.32 (0.31)
RG_10 0.82 (0.15)  0.97 (0.05)  0.94 (0.10) 0.87 (0.23) 0.33 (0.38)
IMJ_TRIANGLE 0.77 (0.18) 0.97 (0.09) 0.93 (0.15) 0.86 (0.39) 0.39 (0.47)
GCR 0.73 (0.22)  0.96 (0.10)  0.93 (0.17) 0.82 (0.41) 0.37 (0.45)
KM 0.63 (0.17)  0.87 (0.20)  0.78 (0.27) 0.40 (0.55) 0.77 (0.57)
IMJ_OTSU 0.61 (0.17)  0.84 (0.18)  0.74 (0.24) 0.38 (0.53) 0.82 (0.48)
TNC 0.49 (0.29)  0.81 (0.28)  0.70 (0.34) 0.01 (0.84) 0.81 (0.55)
RG_70 0.49 (0.09)  0.75 (0.19)  0.64 (0.17) 0.02 (0.19) 0.93 (0.28)
MNC 0.50 (0.05)  0.57 (0.17)  0.51 (0.05) 0.01 (0.09) 1.66 (0.35)
IMJ_SB 0.46 (0.04)  0.70 (0.19)  0.58 (0.12) 0.00 (0.00) 0.88 (0.24)
FMI DC NMI HAUSD MASD
[0,1] [0,1] [0,1] [0,...) [0,...)
GORD 0.96 (0.05)  0.97 (0.07) 0.82 (0.22) _ 40.31 (65.19) 4,57 (8.03)
GC_FH 0.96 (0.04) 0.96 (0.10)  0.83 (0.26)  32.60 (54.43) 4.43 (7.28)
MS 0.96 (0.07)  0.95 (0.11)  0.81 (0.23)  45.50 (68.99) 5.71 (10.63)
GC_CV 0.96 (0.08)  0.94 (0.16)  0.79 (0.33)  53.48 (71.93) 5.79 (13.93)
IMJ_IME 0.96 (0.06)  0.95 (0.09)  0.80 (0.25)  48.71 (94.05) 5.82 (11.98)
RG_10 0.95 (0.08)  0.95 (0.10)  0.78 (0.26)  57.24 (97.56) 6.40 (12.15)
IMJ_TRIANGLE 0.95 (0.10) 0.93 (0.26)  0.77 (0.38)  54.58 (127.65) 7.00 (22.40)
GCR 0.94 (0.11)  0.92 (0.16)  0.74 (0.37)  56.04 (71.01) 7.98 (21.90)
KM 0.85 (0.17)  0.62 (0.46)  0.39 (0.43) 118.17 (177.56)  29.42 (47.81)
IMJ_OTSU 0.82 (0.16)  0.60 (0.48)  0.36 (0.40) 124.39 (192.89)  34.48 (58.20)
TNC 0.81 (0.19)  0.12 (0.89)  0.05 (0.71)  361.82 (449.15)  111.70 (129.26)
RG_70 0.78 (0.11) 0.11 (0.37) 0.08 (0.20) 370.18 (333.21) 98.91 (82.07)
MNC 0.59 (0.09)  0.39 (0.31)  0.02 (0.11)  197.50 (75.12)  63.94 (23.54)
IMJ_SB 0.76 (0.10) 0.00 (0.01) 0.01 (0.02) 523.64 (181.98) 144.72 (41.20)

Table 2: Table with median values and interquartile ranges in brackets (both
rounded to two decimal places) of all ten quality indices for several selected
segmentation methods in SEM modality. Median value is the average perfor-
mance of a segmentation method on a set of images according to a quality index.
There are the six most successful methods, several representative methods in
the middle and the two worst methods according to evaluation in section 3.3 (in
this order). SEM modality is chosen for demonstration due to bigger variance
in indices values for different methods in different places of the ranked list than
it is in other two modalities.

Quality indices

BHD HD RI ARI VI FMI DC NMI HAUSD MASD
GC_RD GC_RD GC_RD GC_RD GC_FH GC_FH GC_RD GC_FH GC_FH GC_FH
GC.CV GC_FH GC_FH GC_FH GC_RD GC_RD GC_FH GC_RD GC_RD GC_RD

RG-15 MS MS IMJ.IME GC_.CV GC.CV  IMJ.IME MS MS MS
RG_10 GC_.CV GC.CV GC.CV  IMJ.IME MS MS IMJIME IMJ.IME GC.CV
MS IMJ.IME IMJ.IME MS RG-10 IMJ.IME RG_-10 GC_CV GC.CV  IMJ.IME

Table 3: Lists with first five segmentation methods (rows) according to every
quality index (columns) in SEM modality. Lists are sorted by median values,
thus by average performance of segmentation methods.

16



Algorithm 2 Denotes the best average segmentation algorithm overall

for all Q from the set of quality indices do
result, medians <— empty vectors
for all M from the set of segmentation methods do
for all I from the set of input images do
compute () on the result of M on I to obtain value valg
result(M,I) + valg
end for
medians(M) « meglian {result(M,I)}
end for
Mg < argmax{medians(M)} {or min depending to the index}
M

end for
apply majority vote on all Mg to obtain MpgrsTave
return Mpgstava

the third and the fourth position. The last one with other noticeable loss in
performance is mainly region growing with parameter 25 (RG_25). There are
sporadic occurrences of other methods from studied set on lower positions, but
nothing of importance. The result in VIS modality is not so clear. Majority vote
denotes MS to be the best average method, since five quality indices vote for it.
Nonetheless four indices are for MNC (in RGB) and one for GC_FH. The rest of
the first five positions is shared by plenty of different methods including thresh-
olding, RG, K-means etc. The conclusion is that there exist four very good
methods which can be used as number one choice depending on the modality.
It is GC_FH and GC_RD for SEM, MS for both UV and VIS modality, in the
latter case supported by MNC (in RGB).

The evaluation of previous paragraph can be done more rigorously with the
removal of the following shortcoming in addition. The choice of the best average
method (and four runners up) was based on the position within ten sorted list
coming from ten quality indices. Unfortunately the situation when one method
was chosen as the best one by several indices and given a lower rank by others
was not taken into account because only first five positions were considered.
Therefore, the results could be little bit inaccurate. This drawback can be
amend by exploiting the information about performance of all the methods
from all the indices, i.e. by processing complete sorted lists of indices’ values.
The goal is to combine all ranked lists to the single ordering which would express
input preferences in the best way. This is called a rank aggregation problem
and is extensively studied in different fields (elections, web search etc.). See for
example [51] in context of web searching. We use RankAggreg package [52] for R
statistical software'? for our evaluation. It implements optimization techniques
necessary to produce final ranked list'. As a result there is one list of image
segmentation methods sorted by their performance (according to quality indices)

12http ://www.r-project.org

130ptimization is unavoidable because due to amount of data (ten relatively long lists) the
exact solution cannot be computed in feasible time. However exact solution can be computed
for short input lists and they more or less match the corresponding part of presented opti-
mization results. Unfortunately implemented optimization algorithms do not necessarily find
a global optimum and can get stuck in a local one. The scripts were therefore executed many
times to obtain as best solution as possible.
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SEM | GC.RD, GC.FH, MS, GC.CV, IMJIME, RG.10, RG.15, HT.ME,
IMJ_TRIANGLE, IMJ.MEAN, HT_MEAN, HT.IME, GC.R, IMJ_HUANG,
RG_20, IMJ.LI, RG.5, RG.25, KM, HT.INTER, HT.INTERI, IMJ.DEF,
HT_.CONCAV, IMJ_ISO, IMJ_OTSU, RG_50, HT_MOM, IMJ_MOM, IMJ_PER,
HT_IM, TNC, IMJ_IM, HT_MEDIAN, IMJ_RENYI, RG_70, IMJ_YEN, HT_MIN,
HT_MAXLIK, HT_ENT, IMJ_MAXENT, IMJ_MIN, MNC, IMJ_SB

UV | MS, GC_FH, MNC_.GRAY, MNC_RGB, RG.20, GC.R.LAB(AB), RG.25,
GC_CV, RG.15, IMJ_.TRIANGLE, KM_LAB(AB), HT_.MEAN, IMJ_HUANG,
RG.50, TNC, GC.R.LAB, IMJ.LI, IMJ.MEAN, RG.10, KM.GRAY,
KM_LAB, RG.70, HT_INTER, HT_ME, HT_.INTERI, IMJ.DEF, KM_RGB,
MNC_LAB(AB), IMJ.OTSU, GC.R.LAB(L), HT.CONCAV, IMJISO,
MNC.LUV(L), HT-MOM, GC-RD, IMJ.MOM, HT.M, HT_MAXLIK,
IMJ_IM, GC_R.RGB, HT_MIN, IMJ_YEN, IMJ_MIN, IMJ_RENYI, HT_ENT,
IMJ_MAXENT, IMJ_IME, RG_5, HT_IME, IMJ_PER, HT_MEDIAN, IMJ_SB

VIS | MS, MNC_.RGB, KM_RGB, IMJ.OTSU, IMJ_ISO, IMJ_DEF, IMJ_HUANG,
HT_INTERI, TNC, MNC_LUV(L), GC_.CV, HT_INTER, KM_LAB, KM_GRAY,
IMJ_MEAN, IMJ.MOM, IMJIME, HT_MEAN, HT_MOM, IMJ.IM, RG_70,
RG.50, IMJ.LI, MNC.GRAY, HT.IM, IMJ.RENYI, GC.FH, IMJ_MIN,
HT_MAXLIK, HT_MIN, GC_R_LUV(UV), IMJ_YEN, KM_LAB(AB), RG_25,
MNC_LAB(AB), RG_20, HT_.ENT, GC_R.LUV(L), RG_15, IMJ_.TRIANGLE,
GC.RD, HT_.CONCAV, HT.ME, IMJPER, IMJ.MAXENT, HT_MEDIAN,
RG_10, HT_IME, RG_5, IMJ_SB

Table 4: Final lists of segmentation methods sorted according to their average
performance (the best in the first place) in all three modalities.

for each modality. This list represents consensus of ten input lists as individual
voters with preferences.

It is impossible in this limited space to deeply analyze positions of every
segmentation method in the final lists. Hence we focus only on several promi-
nent methods, interesting results and general position of different approaches
(comprehensive analysis is given below in section 3.4). The complete lists are
appended in table 4. Rousson-Deriche approach (GC_RD) and Felzenszwalb’s
method (GC_FH) stay the best average methods in SEM modality with that
GC_RD is the best one. This result is little bit surprising, because GC_RD
was not so successful as the best method overall (in previous section 3.2) and
nothing indicated that it would outperform the others on average. Mean Shift
algorithm (MS) and Chan-Vese approach (GC_CV) follow the two. Iterated and
normal version of minimum error thresholding is very successful (both ImageJ
and HistThresh, i.e. IMJ IME, HT_ IME and HT_ME), as well as Triangle and
Mean approaches (IMJ_.TRIANGLE and IMJ_MEAN). Region growing (RG)
with parameters 10 and 15 occupies position 6 and 7 in the list, other param-
eters are scattered in the middle. From already mentioned methods K-means
(KM) and GrabCut (GC_R) rather disappoint with its results and multiscale
normalized cut (MNC) completely fails with the last but one position.

MS is the best average algorithm in UV modality, which only confirms its
dominance. It is followed by GC_FH and grayscale and RGB versions of MNC,
which is very opposite from SEM modality, where grayscale version fails. Pa-
rameters 15, 20 and 25 of RG are suitable for UV modality as they are placed in
top 10 also with GC_CV method. IMJ_TRIANGLE, IMJ_ MEAN, IMJ HUANG
and IMJ_LI are the most useful thresholding methods. Several colorspace alter-
natives of KM are ranked in the top half. Contrary to SEM modality GC_RD

18



method is not very good as it is ranked in bottom half of the list. The least
successful method is Shanbhag (IMJ_SB) approach to thresholding. It is inter-
esting that this method was voted as the best one overall for one image (previous
section 3.2) despite its uselessness on average.

MS is the best average algorithm also in VIS modality, but otherwise the
situation differs a lot compared to previous two modalities. In the second and
third place there are RGB version of MNC and RGB version of KM algo-
rithm. Apart from them top 10 consists further from thresholding methods,
IMJ_OTSU, IMJ_ISO, IMJ HUANG and Tao’s thresholding method (TNC) to
name several. GC_CV algorithm produces satisfactory results. GC_FH, GC_R
or GC_RD do not perform very well. Concerning RG approach its results are
generally worse than in the previous two modalities. However higher values of
parameter like 50 or 70 are definitely better than smaller ones. IMJ_SB thresh-
olding is again the worst segmentation method on average.

The evaluation in this section delivers very interesting results. The most
important is the construction of lists of segmentation methods sorted by al-
gorithms’ performance according to ten selected quality indices. The ordering
allows the future user to pick the suitable segmentation method for his prob-
lem and character of data (which are represented by different modalities in this
paper). The lists also provides an insight to performance of different segmen-
tation methods and their comparison. The conclusions about the performance
depend on the specific modality, but generally some resume can be made. Mean
Shift algorithm performs very well in all three modalities and can be declared
the best average method overall. Felzenszwalb’s method, Rousson-Deriche and
Chan-Vese approaches, and multiscale normalized cut may deliver excellent re-
sults as well. Region growing is not a bad choice either, but its performance
depend on the chosen parameter. Thresholding can be good alternative too, but
the choice of specific algorithm has to respect the properties of data. Segmenta-
tion methods which take place at the end of the lists perform badly on average,
however that does not necessarily mean that they perform badly on every image
(for example see figure 3, where region growing outperforms the best method
on average — Mean Shift. RG_25 is ranked in the bottom half.). Furthermore
they may provide important diversity for segmentation fusion/combination or
other processing (section 4). More discussion and conclusions are presented in
section 3.4.

One remark concerning correctness of the above evaluation has to be made
before closing this section. The comparison does not take into account the
absolute values of quality indices. So it is possible that the best average seg-
mentation method is certainly better than the rest of the methods in the studied
set, but absolutely its performance is poor with useless results. However it is
not the case. The segmentation methods at the top of the lists obtained rela-
tively high values from the quality indices (and vice versa for the methods at
the bottom). See table 2 for reference in case of SEM modality. The further
evaluation was performed to support this conclusion more precisely. The output
of segmentation method on one image was marked good if its index value was
above specified threshold (and bad if it was below another). Afterwards all the
methods were ranked according to the number of their occurrences in a set of
good outputs and a set of bad outputs. The results of this evaluation did not
differ much with the results of this section described above.
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3.4 Discussion of the achieved results

In this section, deeper analysis of the evaluations and their results is presented.
We will use it to give recommendations for the application of studied image
segmentation methods in different situations, i.e. for different data. First the
distinct features of each modality (SEM, UV and VIS as shown in figure 1) are
examined in more detail. Then the performance of each segmentation approach
and its connection to input images (or modality) is evaluated to make clear in
which situations which image segmentation methods perform the best.

SEM modality images are products of scanning electron microscope. This
technique enables to study chemical contrast of different materials. In the image
it is expressed by varying texture of the cross-section in contrast to relatively
homogeneous background. Thus the boundary edges between the cross-section
as foreground object and the background are usually sharp and clear. The
cross-section has generally different intensity values than the background. All
this could make the segmentation quite easy. However in case of our data
set the task is sometimes complicated with the artifacts induced by scanning
microscope, and certain materials used in the paintings do not have sufficient
contrast response so the boundary edge is not sharp enough.

UV modality is similar to SEM in that the background is homogeneous. UV
light reveals a possible fluorescent property of certain materials. Such materials
have bright response (typically green, turquoise or blue) in the image. Non-
fluorescent materials are on the other hand often dark and they blend with the
background which is dark by definition due to absence of fluorescent property
of polyester resin. Another problem is that the non-surface parts of the cross-
section can shine through transparent resin and form blurred shadows on the
borders of the cross-section. Satisfactory background removal can therefore be
quite challenging.

VIS modality captures optical properties in visible spectrum. The sharpness
of cross-section boundary varies from high contrast edge to fluent transition to
background depending on the material color. The transparency of polyester
also remains a problem in VIS modality. The difficulty of background removal
is thus similar to UV modality in this aspect. In addition the background is not
uniform. The lighting can be reflected unevenly and there can be lot of different
artifacts like air bubbles which are not visible in other modalities. Also grinding
artifacts may be a problem as was mentioned before. Figure 4 gives examples
of distinct properties of VIS images.

To summarize key properties of the modalities SEM modality generally rep-
resents images with sharp and contrast boundary edges, relatively homogeneous
background and often clear separation of object and background intensity val-
ues. UV modality images have uniform background, but unclear boundary edges
between background and certain (non-fluorescent in our case) parts of the fore-
ground object, also transparency of the resin is the problem. VIS images are
similar to UV in problems with unclear boundary edges and transparency of the
resin. Difference is in more problematic background which is not uniform and
contains artifacts.

Discussion about the usability of studied segmentation methods starts with
simpler approaches, i.e. region growing, thresholding and K-means'*. Region

MConcerning different colorspaces region growing and thresholding exploited only the
grayscale information in all three modalities. K-means was evaluated in more colorspaces.
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(e) (f)

Figure 4: Set of six VIS images demonstrating different properties which cause
problems for image segmentation. In figure (a) there is neat and relatively easy
to segment image for comparison. Other images demonstrates non-uniform illu-
mination of the background ((e), (f)), problematic transparency of the polyester
resin ((b), (c)), grinding artifacts ((c)-(f)), air bubbles and defects in the back-
ground ((c), (f)) and finally unclear boundary edge between cross-section and
background (d).
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growing generally delivers satisfactory results when there is relatively homoge-
neous background and boundary between desired segmented object and back-
ground is apparent. In our case it is demonstrated on SEM and UV modalities
where the background surrounding the cross-section is more or less uniform. Tol-
erance to non-uniformity is given by parameter. The smaller values of parameter
are sufficient for images in SEM, while slightly higher values are required for
UV to compensate the transparency mentioned above. Region growing is then
placed in top 10 of the best average methods. VIS modality is different. The
background there is more variable in such way that it almost prohibits compen-
sation with high parameter values (region growing would easily cross the border
between background and foreground object in that case). This being said high
values of parameter are more suitable in VIS. Overall region growing approach
can provide satisfactory results comparable to more complicated methods if the
assumptions of relatively uniform background and clear border are met.

Thresholding methods (not only those in the studied set) differ in the way
they find the threshold to divide pixels into two groups. Strictly bimodal his-
togram would be an optimum situation, however such case is not very common
in our input data set (and in real images neither). Therefore some methods
are more successful in handling non-optimum case than others. In SEM modal-
ity where the background pixels in histogram are easier to separate Triangle
(IMJ_TRIANGLE), Mean (IMJ_MEAN) and minimum error method (IMJ_IME)
are the most successful. On the other side of spectrum there are entropy-based
methods (IMJ_MAXENT, IMJ . RENYI, IMJ_SB, HT_ENT) and several others
(HT MAXLIK, IMJ_.YEN, IMJ_MIN). In UV modality the intensity values of
the foreground often blend with those of the background, which is difficult condi-
tion for thresholding. Triangle, Huang (IMJ_.HUANG), Mean and Li (IMJ_LI)
methods handle it well on average. The spectrum of failing methods stays
the same as in SEM modality. IMJ_IME produces disappointing results too.
Though the image properties of VIS modality are similar to those of UV mostly
different thresholding methods are satisfactory in VIS. Otsu (IMJ_.OTSU and
HT_INTER), IsoData (IMJISO, IMJ DEF and HT_INTERI) and Huang are
among the most successful methods. Concerning Tao’s thresholding approach
(TNC) it succeeds in UV and VIS modalities, while it fails in SEM. Thus it deals
better with visually hard cases with smooth transitions between background and
foreground than in cases where the intensity values of the foreground object are
clearly separated from those of the background.

The results of K-means (KM) approach are highly dependent on colorspace
(or subspace) which the input data are in and on overall color profile of the
images in different modalities. Grayscale (the only one for SEM), LAB (plus AB
subspace) and RGB variants are analyzed. KM in grayscale produces merely
mediocre results on average in all three modalities. Same thing can be said
on account of full LAB space variant (in case of UV and VIS) with slightly
better results in VIS. However interesting results appear concerning KM in AB
subspace of LAB and RGB. Both can perform well depending on color profile of
the image. In UV modality where the images are mainly darker with dominant
responses in blue or green the AB variant is placed in top positions of the
ranked list. RGB variant performs much worse. The situation is opposite in
VIS modality. RGB variant is the third best average method while AB variant
takes place in two thirds of the ranked list. It is clear that successful use of
K-means depends on the overall color dominance of input images. Generally its
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results can be quite satisfactory.

After more straightforward approaches were analyzed we will now focus on
more complex segmentation methods in the studied set®. Felzenszwalb’s method
(GC_FH) performs very well being the second most successful average segmen-
tation method in SEM and UV modalities. However it does not perform that
well in the remaining VIS modality. The algorithm has apparent problems
with converging to stable result when the border of the object is unclear and
background is not homogeneous (and in that sense resembles the foreground
object). In such cases the segmented result is often blank image. Apart from
that GC_FH can be excellent method for segmentation which copes with other
mentioned problematic image properties appropriately. Danék’s optimization
of Chan-Vese and Rousson-Deriche functionals is very successful for the easy
to segment images with clear and sharp border between object and surround-
ing background (GC_RD is the best average method in SEM, GC_CV being
the fourth). Otherwise they struggle with unclear transitions and transparency.
GC_RD fails in UV and VIS modality, GC_CV still manages to take position in
top third of the average ranked list, but its results are often dissatisfactory. The
results of multiscale normalized cut (MNC) differ with various colorspace con-
figurations. MNC produces very good results when the original RGB colorspace
is conserved (second place in VIS modality and fourth place in UV modality av-
erage ranked list). Also the exploitation of only the intensity channel (grayscale
or lightness from LUV) can be profitable in case of UV and VIS. In all other
cases MNC rather fails, especially in SEM modality. GrabCut algorithm (GC_R)
provides perhaps the worst results from group of more advanced segmentation
methods and cannot be recommended for unsupervised segmentation in similar
setting. Originally it is based on user interaction and its power lies in addi-
tional adjustment of initial segmentation. Mean Shift is the last algorithm to
discuss. According to the results of evaluation it is the best average segmenta-
tion method in the studied set. It can handle problematic image properties well
and its outputs often outperforms the rest (see section 3.2).

With regard to the analyses above Mean Shift algorithm should be number
one choice for image segmentation of related data. However several other meth-
ods could perform well while respecting above conditions, i.e. MNC, GC_CV,
GC_RD or GC_FH. Should the execution time be an issue GC_FH especially
would be an excellent choice. In that situation even plenty of thresholding
methods or region growing could provide good results with some limitations.
Concerning three modalities it is confirmed that SEM images are easier to seg-
ment thanks to clear boundaries between foreground object and relatively uni-
form background. Segmentation methods perform there generally much better
than in UV and VIS where the segmentation is complicated by image properties.
Table 5 offers recommendations on the use of segmentation methods depending
on the input image properties.

One more evaluation was performed in addition to already described pro-
cedures. The idea was to find out what are the various segmentation methods

15From those Felzenszwalb’s method is applied to the images in original colorspaces. That
means grayscale in case of SEM modality and RGB colorspace in case of UV and VIS. Process-
ing in different colorspaces delivers comparable results. Mean Shift segmentation followed the
original paper and LUV space is used. Danék’s version of Chan-Vese and Rousson-Deriche
use the grayscale information. So only the performances of multiscale normalized cut and
GrabCut algorithm are analyzed in different colorspaces.
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Images in general

— Mean Shift algorithm would be number
one choice

Image with relatively homogeneous back-
ground and apparent boundary edge be-
tween object and background

— Region growing with appropriate param-
eters

— Felzenszwalb’s method (even in the case
of not so clear boundary edge and partial
blending of the object and the background)
— Chan-Vese and Rousson-Deriche ap-
proaches optimized by Danék

Image with possibly unclear boundary
edges between object and background, pres-
ence of shadows or halos around boundaries

— Multiscale normalized cut in RGB or ap-
plied to intensity /luminance channel

Image with easier to separate histogram

— Thresholding methods Triangle, Mean or
minimum error thresholding

Image with more blended histogram

— Thresholding methods Triangle, Huang,
Otsu or IsoData
— Tao’s thresholding approach

Image with color composition similar to UV
modality

— K-means in AB subspace of LAB col-
orspace could deliver interesting results

Image with color composition similar to VIS
modality

— K-means applied to whole RGB image
could be good choice

Table 5: Table contains generalized findings of the evaluation. Mean Shift
algorithm should be number one choice segmentation method. Use of other
methods depends on the input image properties. Details and further results are
described in the text.

sensitive to in the input images. For each method the images could be clustered
to three groups — where the output is good, bad and the rest. If some common
features for the images in such groups could be found, it would provide a lead
on which segmentation method should be used when such features happen to
be present in an input image. Unfortunately no common features in addition
to described properties could be found in defined groups.

Finally one remark to close the evaluation. It is important to keep in mind
that behavior of some algorithms can be influenced with parameter setting. In
our evaluation parameters are tuned to specific input data and we assume that
same thing has to be done for different data set.

4 Demonstration of evaluation results applica-
bility

We now demonstrate how the findings in previous section can be exploited in at
least two different ways. First we show that performance of even the best average
segmentation method can be improved with combination of results of different
segmentation methods. In the second part the applicability of evaluation results
is shown on different data set, i.e. biological images.

4.1 Combination of image segmentation methods

In section 3.3 we found (for each data modality) the image segmentation method
which performed the best on average on input data set. The average means that
this segmentation method often offers satisfactory results but sometimes it can
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fail (but not in such scale as other methods in the studied set). Next methods
in ranked list (second, third, ...) can behave differently (and due to their
different fundamentals they often do) with failing on other images than the best
method. Therefore it would be useful to somehow combine the results of several
segmentation methods to remove unfavorable results and by doing so improve
the overall performance of the segmentation process. The idea of combination
comes from the classifiers domain. Kittler et al. in their paper [53] provided
theoretical framework for combining classifiers. Key idea is to exploit advantages
of different classifiers and eliminate their misclassification (sets of misclassified
patterns do not necessarily overlap). Similar concept exists in clustering domain,
i.e. cluster ensemble. Different clusterings of the same data set are combined to
obtain final clustering of improved quality. See [54] for an extensive survey of
various combination methods and techniques. The idea of combination can be
straightforwardly extended from classification and clustering also to the problem
of image segmentation, because the segmentation method can be considered as
a special kind of classifier or clustering method. See e.g. [55,56] for application
of cluster ensembles to image segmentation.

In our case we have to decide which segmentation methods to combine and
what method of combination to use. Generally it holds that the input set of
methods (results, clustering or classifiers) has to be sufficiently diverse to achieve
the best possible result of combination but at the same time if there are fre-
quently failing methods included the final combination is spoiled (see e.g. [60]
in context of neural networks classification). In terms of image segmentation we
need to combine such segmentation methods which perform very well generally,
do not fail too often and their results differ in important details (boundaries).
We use evaluation results from previous section to achieve this. The best three
average methods form the input set to combination in each modality. They
perform the best from the studied set of methods, do not fail to often and
their results are sufficiently diverse thanks to different fundamentals of each
segmentation method. The combination of more than three methods was found
dissatisfactory because the input results were more frequently bad which neg-
atively influenced the output of combination. Concerning combination method
the majority vote is used. Therefore the pixel of an input image is labeled as
foreground if at least two of the three methods label it as foreground. Otherwise
it is background. We show that even such uncomplicated combination method
can achieve considerable improvement of the image segmentation.

Results of segmentation combination are thus generated for every image in
each modality using the three best average methods. It is Rousson-Deriche ap-
proach, Felzenszwalb’s method and Mean Shift for SEM modality, Mean Shift,
Felzenszwalb’s method and multiscale normalized cut in grayscale for UV modal-
ity, and finally Mean Shift, multiscale normalized cut in RGB and K-means in
RGB for VIS modality (see table 4). The aim now is to compare the results of
the combination to the best average method. Again quality indices are necessary
to ensure objective evaluation. We compute ten indices already used in previ-
ous evaluations for every image and compare them to those of the best average
segmentation methods (Rousson-Deriche approach for SEM and Mean Shift or
UV and VIS modalities). We use statistical evaluation with hypothesis testing
to determine which of the two is better. The Wilcoxon signed-rank test [61]
is used as good trade-off between plain sign test (which does not consider the
magnitude of differences at all) and t-test (which considers the magnitude in
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much stronger way and also the stronger assumptions have to be met). Level of
significance is set to 0.05.

Combination is statistically significantly better than the best average method
in SEM and UV modality. In VIS modality the situation is little bit more com-
plicated. Only four out of ten indices claim that the combination is significantly
better. Conversely two indices claim that the best average method is signifi-
cantly better. The rest stays rather undecided. Thus it cannot be decided which
of the two approaches is better in VIS modality. If we compare combination to
the second best average method (which is multiscale normalized cut in RGB)
situation gets much clearer. Combination is significantly better in this case. For
these reasons the choice of combination approach is appropriate even for VIS
modality thanks to its robustness.

Visual evaluation was done as well to support the findings from statistical
testing. Combination pays off also from this point of view. It is usually better
than the best average methods in SEM and UV modality. In UV the difference
is even more prominent and it is easy to see how combination of several segmen-
tation methods amend inaccuracies of Mean Shift algorithm as the best average
method (see figure 5 for examples). Perhaps surprisingly the same holds for VIS
modality. The results of combination are often more plausible. In those cases
where Mean Shift is better than combination, the difference is often minute.
In the opposite cases difference between combination and Mean Shift is much
larger and combination resembles ground truth more accurately 6.

Conclusion is that combination of several segmentation methods can signif-
icantly outperform use of single (even the best average) segmentation method.
This clearly holds for SEM and UV modality but also in case of VIS it is safe
to use combination approach. Combination there is almost identical or only
slightly worse than the best average method in vast majority of cases and occa-
sionally it gives much better results. See figure 5 for examples of the results of
segmentation combination.

4.2 Biological images

In this section the applicability of evaluation results to different data is shown.
In figures 6, 7 and 8 there are segmentation results of biological images. The first
figure shows the mouse retina. Specimen is colored with hematoxylin-eosin and
captured with optical microscope in visible spectrum. It closely resembles VIS
modality of cross-section images, because boundary edges are not clear enough
and the background contains plenty of debris. The second figure shows trans-
plant mouse cerebellum. Cells of the transplant generate enhanced green fluo-
rescent protein (EGFP) so they are easily distinguishable from recipient tissue
under a fluorescent microscope. The aim is to segment whole tissue (both origi-
nal and transplant) from the background. The third figure shows 2D projection
of 3D rendering of an early stage mouse heart, acquired by optical projection
tomography. The image shows fluorescence excitation and emission. Last two
figures resemble UV modality of cross-section images. The background is homo-
geneous and boundary edges are not so clear. The debris and other unwanted
structures are also present in the background. Although it is not as visible as

16Wilcoxon test is incapable of capturing such subtleties. However t-test with greater sen-
sitivity to magnitude of differences confirms this finding. According to this test combination
is significantly better than the best average method.
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Figure 5: Demonstration of improvement using combination of segmentation
methods compared to the best average method. In each triplet in rows there
is ground truth mask (left column), result of the best average method (middle
column, GC_RD in SEM and MS in UV and VIS) and result of combination
(right column). Last triplet corresponds to the images in figure 3. Combination
there is certainly better than Mean Shift’s result. However even better result
can be achieved with pure region growing in this case as is shown in figure 3.
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Figure 6: Mouse retina colored with hematoxylin-eosin. Boundary of segmented
result by Mean Shift algorithm is depicted by red line. Courtesy of Jan Cendelin,
Faculty of Medicine in Pilsen.

in the case of figure 6, it makes segmentation problematic. The best average
segmentation method for UV and VIS modality is applied, i.e. Mean Shift al-
gorithm. The results are depicted by red boundary line in respective figures.
Also combination of the best three methods was generated following findings of
the previous section. However in case of these three images combination results
were very similar to those of Mean Shift with negligible differences, so they are
not shown in the figures.

5 Conclusion

In this paper the performance of several segmentation methods on images of mi-
croscopic samples in three different modalities was analyzed. The set of ten qual-
ity indices was used to achieve evaluation as objective as possible. We showed
that there was no single segmentation method which significantly outperformed
the others in the studied set. The average performance of the methods was then
evaluated with conclusion that Mean Shift algorithm performed the best and
can be considered the best segmentation method on average. Concerning other
methods in the studied set the recommendations, under which circumstances
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Figure 7: Transplant mouse cerebellum. Boundary of segmented result by Mean
Shift algorithm is depicted by red line. Courtesy of Jan Cendelin, Faculty of
Medicine in Pilsen.
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Figure 8: 2D projection of 3D rendering of an early stage mouse heart. Bound-
ary of segmented result by Mean Shift algorithm is depicted by red line. Cour-
tesy of Martin Capek, Institute of Physiology AS CR, Prague.
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they could perform well, were given. Finally, it was demonstrated that per-
formance of even the best average method could be further improved by using
combination of several segmentation methods. This was confirmed with statis-
tical tests. Moreover the applicability of the evaluation results on different but
related biological data was shown.
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A Additional material to section 3.2

This appendix contains additional material to section 3.2. Deeper analysis of
distribution image segmentation methods among the best methods selected by
quality indices is presented here.

The two most frequent segmentation methods in SEM modality are Felzen-
szwalb’s method (GC_FH) and region growing (with parameter equal to 5 —
RG.5) with 12 occurrences out of 89 possible each among the best methods.
They are followed by Mean Shift algorithm (MS) and Rousson-Deriche approach
(GC_RD). The rest is featured in figure 9. 19 methods out of 43 have zero num-
ber of occurrences. Several important conclusions can be made based on this
histogram. First and the most importantly, there is no segmentation method
which clearly outperforms the others (12 occurrences for MS out of 89 are not
sufficient enough). Second, region growing methods are quite successful, espe-
cially with smaller values of the parameter. Finally, thresholding algorithms
do not perform well individually (though there are 16 occurrences in total for
thresholding).

The situation in UV modality is rather different. MS is clearly the most
successful method. It is better than any other method in 34 cases out of 148
(the total number of UV images). K-means (KM, in AB subspace of LAB
colorspace), GC_FH, GrabCut (GC_R, in RGB) and multiscale normalized cut
(MNC, in grayscale) follow with 12-14 occurrences. Half of the methods (25
out of 52 precisely) are not among the best methods in at least one case. The
rest is displayed in figure 10. As in SEM modality there is no clear winner
which could be mechanically used for segmentation of UV images. MS is indeed
very successful, but it outperforms the others only in quarter of cases which
is not sufficient. Surprisingly, GC_RD and Chan-Vese approach (GC_CV) fail
completely with one and zero occurrences respectively. Region growing does not
perform that well as in SEM modality. Thresholding methods represent only a
complement to more successful methods.

Finally, the results for VIS modality are presented. MS stays the most
frequent among the best methods for each image with 40 occurrences out of 148
possible. Versions of GC_R and MNC in various colorspaces and GC_FH follow
with roughly 10 occurrences. The rest can be seen in histogram in figure 11.
17 methods out of 50 are not selected as the best method at least once. The
conclusions for UV modality hold also here. MS outperforms the other methods
in lots of cases, nevertheless not in the significant majority. GC_RD and GC_CV
approaches fail again. Region growing is not very successful and where it is, the
bigger parameter values are used. In contrast to UV, thresholding methods
represent alternative to more sophisticated methods. They are selected as the
best ones for 31 images in total.
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Figure 9: Graph of number of occurrences among the best segmentation meth-
ods for each method in SEM modality. Felzenszwalb’s method, region growing
(with parameter 5) and Mean Shift algorithm are the most successful methods.
The majority of methods has however two occurrences at most.
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Figure 10: Graph of number of occurrences among the best segmentation meth-
ods for each method in UV modality. Mean Shift is by far the most successful
method with colorspace versions of multiscale normalized cut, K-means, Grab-
Cut and Felzenszwalb’s method behind.

37



B

MS
GC_R_LUV(LV) 1
GC_FH, MNC_RGB, MNC_LAB(AB)
KM_LAB(AB) j
MNC_GRAY, RG_25, IM| MAXENT, MNC_LUVI(L),
RG_70, HT_MAXLIK, IM]_TRIANGLE, KM_RGB
The rest of the methods

16

14t

12}

i1 aooe

Number of methods

0123 4567 8 911112131415 I 40
Occurences

Figure 11: Graph of number of occurrences among the best segmentation meth-
ods for each method in VIS modality. Mean Shift is a method with the most
occurrences. GrabCut follows with large gap and Felzenszwalb’s method and
colorspace variations of multiscale normalized cut are behind. Lots of methods
have two occurrences at most.
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