Optimization Methods



Optimization models

« Single x Multiobjective models

« Static x Dynamic models

« Deterministic X Stochastic models



Problem specification

Suppose we have a cost function (or objective function)

f(x): RY — R

Our aim is to find values of the parameters (decision variables) x that
minimize this function

X" = arg min f(x)
X

Subject to the following constraints:
 equality: C; (X) — ()

- nonequality: c;i(x) >0

If we seek a maximum of f(x) (profit function) it is equivalent to seeking
a minimum of —f(x)



Types of minima

weak strong
strong
local local local
f(X) minimum minimum strong  minimum
global
minimum

feasible region I

« which of the minima is found depends on the starting
point
« such minima often occur in real applications



Unconstrained univariate optimization

Assume we can start close to the global minimum

f(@)

How to determine the minimum?
« Search methods (Dichotomous, Fibonacci, Golden-Section)

«  Approximation methods
1. Polynomial interpolation
2. Newton method

« Combination of both (alg. of Davies, Swann, and Campey)
« Inexact Line Search (Fletcher)



1D function

As an example consider the function

f(x) =0.1+0.12 4+ 22/(0.1 + 27)

(assume we do not know the actual function expression from now on)



Search methods

« Start with the interval ("bracket”) [x, X] such that the
minimum x* lies inside.

« Evaluate f(x) at two point inside the bracket.
* Reduce the bracket.
* Repeat the process.

« Can be applied to any function and differentiability is not
essential.



Search methods
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Polynomial interpolation

 Bracket the minimum.

« Fit a quadratic or cubic polynomial which
Interpolates f(x) at some points in the interval.

« Jump to the (easily obtained) minimum of the
polynomial.

* Throw away the worst point and repeat the
Process.



Polynomial interpolation
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« Quadratic interpolation using 3 points, 2 iterations

« Other methods to interpolate?
— 2 points and one gradient
— Cubic interpolation



Newton method

Fit a quadratic approximation to f(x) using both gradient and
curvature information at x.

« Expand f(x) locally using a Taylor series.

. . . ) . 1 _. i ﬁ
f(x+dx) = f(x) + f'(x)dr + §j”(3;)()$2 1 o(82?)

* Find the dx which minimizes this local quadratic
approximation. ()

or = —=
T )

« Updatex. x,.1=a, —0x =ux, —



Newton method

e avoids the need to bracket the root

e quadratic convergence (decimal accuracy doubles
at every Iteration)



Newton method

« Global convergence of Newton’s method is poor.
« Often fails if the starting point is too far from the minimum.

Iteration 3

v
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Iteration 3

 In practice, must be used with a globalization strategy
which reduces the step length until function decrease is

assured



Extension to N (multivariate) dimensions

 How big N can be?

— problem sizes can vary from a handful of parameters to
many thousands

« We will consider examples for N=2, so that cost
function surfaces can be visualized.

f(x)




An Optimization Algorithm

« Startatx, k=0.

1. Compute a search direction p,

2. Compute a step length «,, such that f(x, + o, p, ) < f(X,)

k= k+1
3. Update x,,, = X, + o, P, +

4. Check for convergence (stopping criteria)
e.g. df/dx=0or

Reduces optimization in N dimensions to a series of (1D) line minimizations



Rates of Convergence

5 pi e =]
oo Jlog — 27

X* ... minimum
p ... order of convergence
f ... convergence ratio

Linear conv.: p=1, <1
Superlinear conv.: p=1, =0 or p=>2
Quadratic conv.: p=2



Taylor expansion

A function may be approximated locally by its Taylor series
expansion about a point x*

f(X*+x)~ f(x)+ V[fIx+ ;x'Hx

where the gradient V/(x") is the vector
of ()_/] T

X1 o LN

V(X)) = {

and the Hessian H(x*) is the symmetric matrix

02 f

Oxy e dxrq10x N
H(x") =] :
0 f 92 f
da Oy e (‘).7"'-\.



Quadratic functions

| 1
f(x)=a+g'x+ ixTHx

« The vector g and the Hessian H are constant.

« Second order approximation of any function by the Taylor
expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum

f(x)=a+g'x+ %XIHX
Expand f(x) about a stationary point x* in direction p

f(x* +ap) = f(x*) + Vf(x") ap + ;o’p" Hp

since at a stationary point Vf(x*) =0

At a stationary point the behavior is determined by H



 His a symmetric matrix, and so has orthogonal
eigenvectors

Hu, = \u, |u,]| =1

fx" + aw) = f(x) + jo*ul Hu
U S
= [(x) + 507X

* As |af Increases, f(x* + au;) Increases, decreases
or is unchanging according to whether 4; is
positive, negative or zero



Examples of quadratic functions

Case 1: both eigenvalues positive

_ - 1 .
f(x)=a+g'x+ le Hx

with B ~|—90 |6 4| positive
a =70, g = [_5()] ) H = L{ G| definite

minimum

5



Examples of quadratic functions
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Examples of quadratic functions

Case 3: one eigenvalues is zero
- 1 .
f(x)=a+g'x+ §x1 Hx

with | | 0 H— 6 0| positive
) 0]’ |0 (] semidefinite

parabolic cylinder



Optimization for quadratic functions

Assume that H is positive definite
f(x)=a+g'x+ 5X Hx

Vfiix) =g+ Hx

There is a unigue minimum at

x*=-H'g

If N Is large, it is not feasible to perform this inversion directly.



Steepest descent

« Basic principle is to minimize the N-dimensional function
by a series of 1D line-minimizations:

Xi+1 = Xp + OpPE

* The steepest descent method chooses p, to be parallel to
the gradient

Pr = —V f(xx)

« Step-size ¢, is chosen to minimize f(x, + o, p,).
For quadratic forms there is a closed form solution:

X — T rove It
I')A- HI)L.' <[




Steepest descent
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lteration 34, f =-250

« The gradient is everywhere perpendicular to the contour
lines.

* After each line minimization the new gradient is always
orthogonal to the previous step direction (true of any line
minimization).

« Consequently, the iterates tend to zig-zag down the
valley in a very inefficient manner



Conjugate gradient

 Each p, is chosen to be conjugate to all previous search
directions with respect to the Hessian H:

p; Hp, =0, I F# ]

« The resulting search directions are mutually linearly

independent. \L Prove it! }

* Remarkably, p, can be chosen using only knowledge of
Pr.ts Vf(xi-1), and V f(x;)

vfl;r vfl.f )
Pk—1

. = V [ + : :
Ph I <vf LT—'IV.]L fe—1



Conjugate gradient

 An N-dimensional quadratic form can be minimized in at
most N conjugate descent steps.

« 3 different starting points.
« Minimum is reached in exactly 2 steps.



Powell's Algorithm

« Conjugate-gradient method that does not require
derivatives

« Conjugate directions are generated through a series of
line searches

* N-dim guadratic function is minimized with N(N+1) line
searches



Optimization for General functions

flx,y) = exp(:z:)(4:z:2 - ‘2;1/2 +dry + 20+ 1)
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Apply methods developed using quadratic Taylor series expansion



Rosenbrock’s function
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Steepest descent

 The 1D line minimization must be performed using one

of the earlier methods (usually cubic polynomial
Interpolation)
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* The zig-zag behaviour is clear in the zoomed view
* The algorithm crawls down the valley




Conjugate gradient

« Again, an explicit line minimization must be used at
every step
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« The algorithm converges in 98 iterations
* Far superior to steepest descent



Newton method

Expand f(x) by its Taylor series about the point x,

- \ . / ! T ¢ —l \ T Y
f(Xk n ()X‘) ~ f (X,{_) + gf, 0X + Q(BXJ H,ox

where the gradient is the vector -
Jof  of
g =V[f(xp)=|—...—

X1 . TN

and the Hessian is the symmetric matrix

- 0°f 0° f
(").I'T " Oxrq0xy
H, = H(x;) = . :
o f 0% f
| O N Oy D3,




Newton method

For a minimum we require that V f(x) = 0, and so
Vix)=g.+Hx=0

with solution 0x = —H, 'k This gives the iterative update
—1 X
Xk+1 — X — HA- g

« Iff(x) is quadratic, then the solution is found in one step.
«  The method has quadratic convergence (as in the 1D case).
. The solution 0x = —H, 'g1 is guaranteed to be a downhill direction.

. Rather than jump straight to the minimum, it is better to perform a line
minimization which ensures global convergence

N —1
Xk+1 = Xk — (\I.-HL. g

. If H=1 then this reduces to steepest descent.



Newton method - example
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« The algorithm converges in only 18 iterations compared
to the 98 for conjugate gradients.

 However, the method requires computing the Hessian
matrix at each iteration — this is not always feasible



Quasi-Newton methods

« If the problem size is large and the Hessian matrix is
dense then it may be infeasible/inconvenient to compute
it directly.

* Quasi-Newton methods avoid this problem by keeping a
“rolling estimate” of H(x), updated at each iteration using
new gradient information.

« Common schemes are due to Broyden, Goldfarb,
Fletcher and Shanno (BFGS), and also Davidson,
Fletcher and Powell (DFP).

« The idea is based on the fact that for quadratic functions

holds g1 — g1 = H(Xp41 — x3)

and by accumulating g,’'s and x,'s we can calculate H.



BFGS example

I T T ) R T
teration 34, f = 3.4588e-008

 The method converges in 34 iterations, compared to
18 for the full-Newton method



Non-linear least squares

It is very common in applications for a cost
function f(x) to be the sum of a large number of
sqguared residuals

M
fx) =) r7(x)
=1

If each residual depends non-linearly on the
parameters x then the minimization of f(x) is a
non-linear least squares problem.



Non-linear least squares

« The M x N Jacobian of the vector of residuals r is defined
as

~ Orq ory
(A:).rjl o (“).l‘.\r

J(x) =

Or g Orag
L Oxq T orn |

of 9, 5 ) or;

A, — = r; = E i~

dr.  Oup “~—~ ' , Oxy.
() 1

« Consider

e Hence
Vfi(x)=2J"r



Non-linear least squares

. For the Hessian holds

dr; Or,
()IAOI[ ZO.I‘[()J’/ Z,l()ll\()ll

Lot Gauss-Newton
@X) ~ ZJJ/ ~ approximation

Note that the second-order term in the Hessian is multiplied by the
residuals r;.

. In most problems, the residuals will typically be small.
 Also, at the minimum, the residuals will typically be distributed with

mean = 0.
. For these reasons, the second-order term is often ignored.
. Hence, explicit computation of the full Hessian can again be avoided.



Gauss-Newton example

« The minimization of the Rosenbrock function

f(‘.'l,‘_, ‘,1/) = .l,(_)()(j/ — ,'1:2')‘-) + ('1 _ '1.)2

L

e can be written as a least-squares problem with
residual vector

J— |9 oy | — —20x 10
|52 B 10
ox dy




Gauss-Newton example

B T
Xpi1 = X5 — o H gy, H;, = 2J; J;

05 1 15
Iteration 11, f= 2.8678e-012

2

* minimization with the Gauss-Newton approximation with
line search takes only 11 iterations



Levenberg-Marquardt Algorithm

* For non-linear least square problems

« Combines Gauss-Newton with Steepest Descent
« Fast convergence even for very “flat” functions

« Descend directionox :

— Newton - Steepest Descent
Hix = —g 0X = —g
J'Jox = —J'r

(J'T + M\)éx = —J'r

Gauss-Newton:

(J'T + Adiag(J'I))ox = —J'r e — 277y
H=2J"]




Comparison

Quasi-Newton Gauss-Newton



Derivative-free optimization

Downhill
simplex
method

%

-

Xh highest point
X1 lowest point

Xg centroid of N points

~




Downhill Simplex

-16 -155 15 -145 14
Iteration 114, f= 4.0686e-010

Iteration 114, f = 4.0686e-010



Comparison

Quasi-Newton Downhill Simplex



Constrained Optimization

f(x):RY — R

X" = arg min f(x)

Subject to:
« Equality constraints: a;(x)=0 i=1,2,....p
 Nonequality constraints; ¢;(x) =20 7 =1.2,....¢q

« Constraints define a feasible region, which is nonempty.

 The idea is to convert it to an unconstrained optimization,



Equality constraints

« Minimize f(x) subjectto: a;(x) =0 for i=1,2,...,p

« The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of a;(x) with

Lagrange multipliers as the coefficients.

P
Vi) =) A\Vai(x)
=1



f3>1,>1
x IS not a minimizer

X* is a minimizer, A*>0

f >1,>1,

X* IS a minimizer, 1*<0

X* IS not a minimizer



3D Example

1 1
Fa s — ' — [ o I

a1 (x) =—r1+x3—1=0

ay(x) = x5 + 15 — 221 = 0




3D Example

(ST e o N %) w I

o B
% 2 X

fix) = 3

Gradients of constraints and objective function are linearly independent.



3D Example

1 1
3 b — = — [ L) =

fix) =1

Gradients of constraints and objective function are linearly dependent.



Inequality constraints

e Minimize f(x) subjectto: c¢;j(x) >0 for jJ=12,...

« The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of ¢;(x), which are
active (¢;(x) =0)

« and Lagrange multipliers must be positive, ; =0, 5 € A

VX)) =) Ve (x)

JEA

0,



f, >f,>f,

No active constraints at
x* V¥ j'(x) = ()

f,>f,>1,

X* Is a minimizer, x>0



Lagrangien

« We can introduce the function (Lagrangian)

q
L(x. X, ) ZA ai(x) = Y 1;c;(x)
7=1

« The necessary condition for the local minimizer is

oL oL oL
‘71;C$,;\,}L)3:3() — BE“:(L 3N = 0, ;ZJZZO

and it must be a feasible point (i.e. constraints are
satisfied).

« These are Karush-Kuhn-Tucker conditions



Dual Problem

Primal problem: minimize f(x)
subject to: c(z) <0

Lagrangian: L(xz, u) = f(x) + pc(x)
Dual function: ¢(u) = inf L(x, u) IS always concave!

Dual problem: maximize g(u)
subjectto: >0

If f and c convex = sup g = inf f (almost always)



Dual Function

min f(x)
s.t.e(z) <0 Lz, p)

|

(53 |
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0 0.2 0.4 0.6 0.8



Alternating Direction Method of Multipliers

Gabay et al., 1976
 f, g convex but not necessary smooth
min f(x) + g(Ax)

e e.g..gis L1 norm or positivity constraint
 variable splitting

min f(x) + g(z) st. Ax—2z =0

 Augmented Lagrangian.

L(x,z,y) = f(x) + g(z) + y' (Ax —z) + (p/2)||Ax — 2|3



Alternating Direction Method of Multipliers

L(x,2,y) = f(x) + g(z) +y' (Ax —z) + (p/2)||Ax — 2|5

 ADMM
k+1 . . k k .. !
X' = al“glll}gIlL(X:Z YY) X minimization
zF 1l .= arg min L(Xkﬂjz,yk) Z minimization
z

yk—l—l . — yk + p(AXL':—I—l L Z}’sz—}—l) dual update



Alternating Direction Method of Multipliers

L(x,z,y) = f(x) + g(z) + y' (Ax —z) + (p/2)||Ax — 2|5

« Optimality conditions

— Primal feasibility Ax—-z=10
_ Dual feasibility Vix)+Aly=0, Vg(z)—y=0
. since z"*! minimizes L(x"*!, z, y")

0 = \—/g(zk-l-l) _ (yk + O'(Axk_l_l _ Zk+1::‘
— Vg(zk—f—l) o yk-l—l
« with ADMM dual variable update (x"*1,z" "1 y*+1)
satisfies 2" dual feasibility condition
* Primal and 15t dual feasibility satisfied as £ — oc



ADMM with scaled dual variable

« combine linear and quadratic terms
L(x,2,y) = f(x) + 9(z) + y' (Ax — z) + (p/2)||Ax — 2|5

= /(%) + g(2) + (p/2)| Ax — z + u3 + const.
with
u=(1/p)y

« ADMM (scaled dual form):
x"t1 .= arg min (j(x) +(p/2)||Ax — z" + uhH%)
z" .= arg mzin (9(z) + (p/2)|| A"t — z 4+ u”|)3)

uk:—l—l — u!;: + (Axk:—l—l o Zkz—i—l)



ADMM - example

« Deconvolution with TV regularization
min(1/2)[[Hx — gl|3 + A|[Dx|;
« Augmented Lagrangian
L(x,2,v) o (1/2)||Hx — g[|3 + Al|z[ly + (p/2)|Dx — z + |3
« ADMM

1) X < argmin L(x,z,v) System of linear equations (CG):
=X
x+ (H'H+pD'D)x=H"g+ pD"(z - v)
2) z < argmin L(x,z,v)  Proximal operator (soft-thresholding)
Z

z + S)/,(Dx +v)
3) v+ v+ (Dx—1z)



Quadratic Programming (QP)

« Like in the unconstrained case, it is important to study
guadratic functions. Why?

« Because general nonlinear problems are solved as a
sequence of minimizations of their quadratic
approximations.

* QP with constraints
Minimize  f(x) = 5x' Hx +x'p

subject to linear constraints.

H is symmetric and positive semidefinite.



QP with Equality Constraints

+ Minimize  f(x)=5x Hx+x'p

Subjectto: Ax=hb

* Ass.: Ais p x N and has full row rank (p<N)

« Convert to unconstrained problem by variable

elimination: Z is the null space of A

x=24¢p+A"b A+ is the pseudo-inverse.
Ce 5 L e I' H = Z' HZ
Minimize [(¢) = -¢ Hop + T ET A *

This quadratic unconstrained problem can be solved, e.q.,
by Newton method.



QP with inequality constraints

+ Minimize  f(x)=5x Hx+x'p

Subjectto:. Ax>b

* First we check if the unconstrained minimizer x*= -H 'p
IS feasible.
If yes we are done.

If not we know that the minimizer must be on the
boundary and we proceed with an active-set method.

* X, IS the current feasible point
- Ay, is the index set of active constraints at x,
« Next iterate is given by X1 = X + agdy,



Active-set method

Xrr1 = X + apd, How to find d, ?

— Toremain active a; X1 — b =0 thus

— The objective function at x,+d becomes

Jr(d) = ;dl Hd +d" g + f(xx)

The major step is a QP sub-problem

aid, =0 jeA

where 8k = V./’(Xk)

1 .
d, = arg llh]n Sd’Hd +d g,

subjectto:  ald =0

Two situations may occur: d, = 0

7€ Ax

or

d, # 0

AT = [Ell ..

a,)




Active-set method

¢ (.‘l,r,. = ()
We check if KKT conditions are satisfied

V.L(x,pn) = Hx, +p — Z pja; =0 and ji; =0

JEAL
If YES we are done.

If NO we remove the constraint from the active set .Ax with the most
negative //; and solve the QP sub-problem again but this time with
less active constraints.

«d, #0
We can move to Xj.1 = X; + d; but some inactive constraints
may be violated on the way.

In this case, we move by «,.dtill the first inactive constraint
becomes active, update 4, , and solve the QP sub-problem again
but this time with more active constraints.



General Nonlinear Optimization

=

o bk WD

Minimize f(x)
subject to: a;(x) = 0
¢j(x) =20
where the objective function and constraints are
nonlinear.

For a given {xx. Ax. ;. } approximate Lagrangien by
Taylor series — QP problem

Solve QP — descent direction {J...6,.6,,}
Perform line search in the direction 4, — Xk+1
Update Lagrange multipliers — { i1, 441}
Repeat from Step 1.



General Nonlinear Optimization

q
Lagrangien  L(x. A, u) Z it Z/z_,-('_,(x)
j=1

At the kth iterate: {xy, Ak, ;.
and we want to compute a set of increments:{9..,0.9,,}

First order approximation of V, /. and constraints:

° V.I~L(XL-+],- AI~'+1 ; N;,-+1) ~ v_,.L(X/‘-. A/ ,J’A-)
"r'v:)L(X; A; M;)(S,“FV:)/\L(X/ )\/ . )5\+V L(X; )\; }LA.)(S,, =0

X

© Ci(Xpy1) R oci(xp) + 5gvxci(xk> > 0
° ai(Xk_,_1> ~ CLZ'(Xk) -+ 5£V$az(xk) =0

These approximate KKT conditions corresponds to a QP program



SQP example

Minimize  f(z.y) = 100(y — 2*)* + (1 — 2)’
subjectto: 1.5 —a7—25>0

> 45 4 05 o0 05 i 15 2
|teration 16, f = 0.0086157



Linear Programming (LP)

LP is common in economy and is meaningful only if it
IS with constraints.

« Two forms:
1. Minimize f(x) =cl'x _
_ _ ) Ais p x N and has
subject to: Ax = b=+ full row rank (p<N)
x = ()
2. Minimize f(x)=clx

subiject to: Ax > b

Prove it!
« QP can solve LP. /[ }

. If the LP minimizer exists it must be one of the vertices
of the feasible region.

« Afast method that considers vertices is the Simplex
method.




