
Affine Moment Invariants

We will suppose the affine moment invariant has form of a polynomial of moments

I = (
nt
∑

j=1

cj

r
∏

ℓ=1

µpjℓ,qjℓ
)/µr+w

00 . (1)

Cayley – Aronhold differential equation

∑

p

∑

q

pµp−1,q+1
∂I

∂µpq

= 0 . (2)

Graph Method

Let us denote
C12 = x1y2 − x2y1.

After an affine transform it holds C ′
12 = J · C12, it means C12 is a relative affine

invariant. It has also geometric meaning as the oriented double area of the triangle,
whose one vertex is the origin of the coordinate system (centroid of the image f) and two
other vertices are points (x1, y1) and (x2, y2).

More precisely, having r points (r ≥ 2) we define functional I depending on r and on
non-negative integers nkj as

I(f) =

∞
∫

−∞

∞
∫

−∞

r
∏

k,j=1

C
nkj

kj ·
r
∏

i=1

f(xi, yi)dxidyi. (3)

For r = 3 and n12 = 2, n13 = 2, n23 = 0 we get

I(f) =
∞
∫

−∞

∞
∫

−∞
(x1y2 − x2y1)

2(x1y3 − x3y1)
2f(x1, y1)f(x2, y2)f(x3, y3)dx1dy1dx2dy2dx3dy3

= m2
20m04 − 4m20m11m13 + 2m20m02m22 + 4m2

11m22

−4m11m02m31 + m2
02m40.

(4)
Each invariant generated by formula (3) can be represented by a planar connected

graph, where each point (xk, yk) corresponds to one node and each cross-product Ckj

corresponds to one edge of the graph. If nkj > 1, the respective term C
nkj

kj corresponds
to nkj edges connecting k-th and j-th nodes. Thus, the number of nodes equals the
degree of the invariant and the total number of the graph edges equals the weight w of
the invariant. From the graph one can also learn about the orders of the moments the
invariant is composed from and about its structure. The number of edges originating from
each node equals the order of the moments involved. The corresponding graph to (4) is
shown in Fig. 1.

Tensors

We can imagine the tensor as an r-dimensional array of numbers that expresses coordi-
nates of some geometric figure in n-dimensional space together with rule, how they change
in affine transform of the space. The rules can be two, covariant and contravariant.
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Figure 1: The graph corresponding to the invariant

A contravariant vector is given by n numbers x1, x2,... , xn, that are transformed

xi =
n
∑

α=1

pi
αx̂α , i = 1, 2, . . . , n (5)

or in Einstein notation

xi = pi
αx̂α , i, α = 1, 2, . . . , n. (6)

The i is not exponent, but upper index.
The affine transform pi

α is in 2-dimensional case

A =

(

p1
1 p1

2

p2
1 p2

2

)

, (7)

we assume its determinant is not zero. If we label the inverse transform

A−1 =

(

q1
1 q1

2

q2
1 q2

2

)

, (8)

we can write
x̂α = qα

i xi , i, α = 1, 2, . . . , n. (9)

A covariant vector is given by n numbers u1, u2,... , un, that are transformed

ûα = pi
αui , i, α = 1, 2, . . . , n. (10)

A covariant tensor of order r is given by nr numbers ai1,i2,...,ir, that are transformed
by affine transformation

âα1,α2,...,αr
= pi1

α1
pi2

α2
· · · pir

αr
ai1,i2,...,ir , i1, i2, . . . , ir, α1, α2, . . . , αr = 1, 2, . . . , n.

(11)
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A contravariant tensor of order r is given by nr numbers ai1,i2,...,ir , that are transformed
by affine transformation

ai1,i2,...,ir = pi1
α1

pi2
α2

· · · pir
αr

âα1,α2,...,αr , i1, i2, . . . , ir, α1, α2, . . . , αr = 1, 2, . . . , n.
(12)

We can have also mixed tensor of the covariant order r1, the contravariant order r2

and the general order r = r1 + r2 with rule

â
β1,β2,...,βr2
α1,α2,...,αr1

= qβ1

j1
qβ2

j2
· · · q

βr2

jr2
pi1

α1
pi2

α2
· · · p

ir1
αr1

a
j1,j2,...,jr2

i1,i2,...,ir1
,

i1, i2, . . . , ir1
, j1, j2, . . . , jr2

, α1, α2, . . . , αr1
, β1, β2, . . . , βr2

= 1, 2, . . . , n.

(13)

In multiplication of the tensors, there is a rule that we perform addition over indices
that are used once as upper one and once as lower one and mere enumeration over indices
used only once. It means mixed tensors with covariant order one and contravariant order
one are multiplied by the same way like matrices

ai
jb

j
k = ci

k, i, j, k = 1, 2, . . . , n, (14)

we perform addition over j and enumeration over i and k.
The relative tensor of the weight g is transformed

â
β1,β2,...,βr2
α1,α2,...,αr1

= Jgqβ1

i1
qβ2

i2
· · · q

βr2

ir2
pi1

α1
pi2

α2
· · ·p

ir1
αr1

a
i1,i2,...,ir2
i1,i2,...,ir1

,

i1, i2, . . . , ir1
, j1, j2, . . . , jr2

, α1, α2, . . . , αr1
, β1, β2, . . . , βr2

= 1, 2, . . . , n.

(15)

J is determinant of A.
The moments do not behave in affine transform like tensors, but we can define moment

tensor [1]

M i1i2···ir =

∞
∫

−∞

∞
∫

−∞

xi1xi2 · · ·xirf(x1, x2)dx1dx2 , (16)

where x1 = x and x2 = y. M i1i2···ir = mpq if p indices equal 1 and q indices equal 2. The
behavior in affine transform

M i1i2···ir = |J |pi1
α1

pi2
α2

· · ·pir
αr

M̂α1α2···αr

or

M̂ i1i2···ir = |J |−1qi1
α1

qi2
α2

· · · qir
αr

Mα1α2···αr , i1, i2, . . . , ir, α1, α2, . . . , αr = 1, 2, . . . , n.
(17)

It means the moment tensor is relative contravariant tensor with the weight g = −1.
Sometimes it is called an oriented tensor, because of the factor |J | instead of J .

For the explanation of the method of tensors, it is necessary to introduce a concept
of unit polyvector. ǫi1i2...in is covariant unit polyvector, if it is skew-symmetric tensor
over all indices and ǫ12...n = 1. The term skew-symmetric means that if we interchange
two indices, the tensor element changes its sign and preserves its absolute value. In two
dimensions, it means ǫ12 = 1, ǫ21 = −1, ǫ11 = 0 and ǫ22 = 0. In affine transform, it is
changed

ǫ̂12...n = Jǫ12...n , (18)
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i.e. it is relative affine invariant with weight 1. Then, if we multiply a proper number
of moment tensors and unit polyvectors so the number of upper indices at the moment
tensors equals the number of lower indices at polyvectors, we obtain one real number,
relative affine invariant, e.g.

M ijMklmMnopǫikǫjnǫloǫmp =

= 2[m20(m21m03 − m2
12) − m11(m30m03 − m21m12) + m02(m30m12 − m2

21)] .
(19)

From an analysis of the computation, we can find this method is computationally
equivalent to the method of graphs, each moment tensor corresponds to a node and each
unit polyvector corresponds to an edge. The indices say, which edge connects which node.
The graph corresponding to the invariant (19) is on Fig. 1.

Theorem

All affine moment invariants in the polynomial form (1) can be expressed as linear com-
binations of some invariants generated by the graph method

I(e) =
n
∑

P=1

cP I
(g)
P . (20)

Here I(e) is general affine moment invariant, e.g. generated as some solution of the Cayley-
Aronhold differential equation, and I

(g)
P , P = 1, . . . n is set of invariants generated by the

graph method with the same structure as I(e).

Proof

Gurevich deals with the proof of similar theorem in [2] or in Russian origin [3]. His theorem
concerns with not only moments, but with all measurements of geometric objects, whose
behavior in affine transform can be described by tensors. We have adapted a part of this
proof related to the moments.

The invariant I(e) can be decomposed into a part of moments B and a part of coeffi-
cients K

I(e) = Ki1i2...i2w
Bi1i2...i2w , (21)

where w is the weight of the invariant. The part B can be expressed as a product of
moment tensors

Bi1i2...i2w = M i1i2...id1M id1+1id1+2...id1+d2 · · ·M i2w−dr+1i2w−dr+2...i2w/mw+r
00 , (22)

r is the degree of the invariant. The numbers d1, d2,... dr is I(e) are orders of the moments.
The product of moment tensors in (22) contains all possible products of moments

with the given structure, so the decomposition (21) is always possible. If some product of
moments occurs several times (e.g. m times) in B, then the corresponding components

of K must be multiplied by 1/m. The invariants I
(g)
P for each P can be decomposed to

the part of coefficients and the part of moments as well, the part B is the same for all
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I
(g)
P and I(e), while the part of coefficients of I

(g)
P can be expressed as a product of unit

polyvectors. Then (20) can be rewritten as

Ki1i2...i2w
Bi1i2...i2w =

(2w)!
∑

P=1

cP ǫ{i1i2ǫi3i4 · · · ǫi2w−1i2w}P
Bi1i2...i2w , (23)

where {i1i2 · · · i2w}P means P -th permutation of the indices i1, i2, · · · , i2w. If the moments
do not identically equal zero, then

Ki1i2...i2w
=

(2w)!
∑

P=1

cP ǫ{i1i2ǫi3i4 · · · ǫi2w−1i2w}P
. (24)

It is important in it that the number of indices is twofold of the weight w of the invariant.
The summation over all permutations of unit polyvector indices is not anything else than
summation over all graphs generating invariants with the given structure. Note that ǫij

has nonzero value only if i = 1 and j = 2 or i = 2 and j = 1, therefore Ki1i2...i2w
can

has nonzero value only if the number of indices with value 1 equals the number of indices
with value two. It corresponds with fact that the sum of first indices equals the sum of
the second indices in a term of an invariant. If we interchange 1’s and 2’s, the value of k
would be multiplied by (−1)w – condition of symmetry.

Now, we multiply K by the corresponding number of contravariant unit polyvectors.
The contravariant unit polyvector (in two dimensions ǫi1i2) has similar properties as co-
variant unit polyvector (it is skew-symmetric tensor over all indices and ǫ12...n = 1) except
that it is multiplied as contravariant tensor, e.g.

ǫi1i2ǫ
i1i2 = 2 . (25)

Then we obtain from (24)

Ki1i2...i2w
ǫx1x2ǫx3x4 · · · ǫx2w−1x2w =

(2w)!
∑

P=1

c∗P δx1

{i1
δx2

i2
· · · δx2w

i2w}P
, (26)

where c∗P = 2wcP and δi1
i2

is Kronecker delta, δi1
i2

= 1 if i1 = i2 and δi1
i2

= 0 if i1 6= i2. The
system of equations (26) has 24w equations for (2w)! unknowns, but many of the equations
are linearly dependent, the rank of the system was not increased. Denote it ((2w)! − s),
where s is some integer greater than zero. Now take the system of equations

(2w)!
∑

P=1

δx1

{i1
δx2

i2
· · · δx2w

i2w}P
λP = 0 . (27)

with unknowns λ1, λ2,..., λ(2w)!. The matrices of the systems (26) and (27) are the same,
therefore the rank of (27) is also ((2w)! − s). That is why the system (27) has s linearly
independent solutions

λP = λσ
P , σ = 1, 2, . . . , s . (28)

Now, we can add to the system (27) the s equations

(2w)!
∑

P=1

λσ
PλP = 0 (29)
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and obtain a system of 24w + s equations. Let the new connected system of equations
(27) and (29) has some solution λP = λ0

P , P = 1, 2, . . . , (2w)!. This solution satisfies all
the equations (27), therefore it must be a linear combination of the solutions λσ

P

λ0
P =

s
∑

σ=1

ασλσ
P , P = 1, 2, . . . , (2w)! . (30)

The equations (29) must be satisfied for every λP , therefore they are satisfied for their
arbitrary linear combinations and also for

s
∑

σ=1

ασ

(2w)!
∑

P=1

λσ
P λP = 0 . (31)

It can be rewritten by (30) in the form

(2w)!
∑

P=1

λ0
PλP = 0 . (32)

It must be satisfied for every λP thus also for λ0
P

(2w)!
∑

P=1

(λ0
P )2 = 0 , (33)

i.e. λ0
1 = λ0

2 = · · · = λ0
(2w)! = 0. It means the only solution of the connected system of

equations (27) and (29) is zero and therefore its rank is (2w)!. To each of the solutions
(28) corresponds a relation of the form

(2w)!
∑

P=1

λσ
P δx1

{i1
δx2

i2
· · · δx2w

i2w}P
= 0 . (34)

Let px1x2...x2w
be an arbitrary tensor of covariance 2w. Since

δx1

i1
δx2

i2
. . . δx2w

i2w
px1x2...xr

= pi1i2···i2w
, (35)

then we obtain from (34)
(2w)!
∑

P=1

λσ
P p{i1i2···i2w}P

= 0 . (36)

The components of the tensor px1x2...x2w
can be selected quite arbitrarily and in spite of

it each component on the left-hand side of (36) equals zero. From it

(2w)!
∑

P=1

λσ
P c∗P δx1

{i1
δx2

i2
· · · δx2w

i2w}P
= 0, σ = 1, 2, . . . , s . (37)

The equality (37) gives s independent linear relations between the unknown coefficients
c∗P . If we add (37) to the equations (26), we obtain a system (A) of 24w + s equations in
the coefficients c∗P . The matrix of this system coincides with the matrix of the connected
system (27) and (29). Consequently, the rank of the system (A) is (2w)! and one may
select from it (2w)! equaitons in such a way that the determinant formed by their system
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(B) is non-zero; the system (B) involves all the s equations (37) and ((2w)!−s) equations of
the system (26) obtained form certain definite values of the indices x1, x2, ..., x2w. Solving
the system (B) we express the left-hand side of (26) in the form of linear combinations of
the right-hand sides of the system (B), i.e. again in the form of the right-hand sides of
(26). It means (26) has always a solution. 2

Notes: The solution of (24) is not unique, since we can add to the right-hand side of
(26) any linear combination of the left-hand sides of (34).

We supposed two-dimensional space here, but the original proof is valid for arbitrary
number of dimensions.
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