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Robust Multichannel Blind Deconvolution via Fast
Alternating Minimization

Filip Šroubek, Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract—Blind deconvolution, which comprises simultaneous
blur and image estimation, is a strongly ill-posed problem. It is
by now well-known that if multiple images of the same scene
are acquired, this multichannel blind deconvolution problem is
better posed and allows of blur estimation directly from the
degrade images. We improve the multichannel idea by adding
robustness to noise and stability in the case of large blurs or
if the blur size is vastly overestimated. We formulate blind
deconvolution as a `1-regularized optimization problem and
seek a solution by alternately optimizing with respect to the
image and with respect to blurs. Each optimization step is
converted to a constrained problem by variable splitting and then
addressed with an augmented Lagrangian method, which permits
simple and fast implementation in the Fourier domain. Rapid
convergence of the proposed method is illustrated on synthetically
blurred data. Applicability is also demonstrated on deconvolution
of real photos taken by a digital camera.

I. INTRODUCTION

Image deconvolution is a classical inverse problem in im-
age processing. Deconvolution appears in a wide range of
application areas, such as photography, astronomy, medical
imaging and remote sensing, just to name few. Images dete-
riorate during acquisition as data passes through the sensing,
transmission, and recording processes. In general, the observed
degradation is a result of two physical phenomena. The first is
of random nature and appears in images as noise. The second
is deterministic and results in blurring, which is typically
modeled by convolution with some blur kernel called the point
spread function (PSF). Degradation caused by convolution can
thus appear in any application where image acquisition takes
place. Common sources of blurring are lens imperfections, air
turbulence, or camera-scene motion. Solving the deconvolution
problem in a reliable way has been of prime interest in the
field of image processing for several decades and has produced
an enormous number of publications.

Let us first consider problems with just one degraded image,
i.e. single-channel deconvolution. The simplest case is if
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the blur kernel is known (classical deconvolution problem).
However even here, estimating an unknown image is ill-
posed due to the ill-conditioned nature of the convolution
operators. This inverse problem can only be solved by adopting
some sort of regularization (in stochastic terms regularization
corresponds to priors). Another option is to use techniques
such as coded aperture [1], but this requires a modification
of camera hardware, which we do not consider here. A
popular recent approach is to let the unknown image be
represented as a linear combination of few elements of some
frame (usually an overcomplete dictionary) and force this
sparse representation by using the `p norm (0 ≤ p ≤ 1).
Either we can search for the solution in the transform domain
(coefficients of the frame elements), which is referred to as
the synthesis approach, or regularize directly the unknown
image, which is called the analysis approach. Analysis versus
synthesis approach has been studied earlier [2], [3]. If the
frame is an orthonormal basis, both approaches are equivalent.
More interesting however is the case of redundant represen-
tation (e.g. undecimated wavelet transform), when the two
approaches differ. Conclusions presented in [3] suggest that for
deconvolution problems, the analysis approach is preferable,
because sparsity should be enforced only on a part of the
redundant representation (e.g. high-pass bands) and this can
be easily implemented only in the analysis approach. Very
recently it was shown that the analysis approach is solved
efficiently using variable splitting and applying a Bregman
iterative method [4] or augmented Lagrangian method [5]
(both methods lead to the same algorithm).

If the blur kernel is unknown, we face single-channel blind
deconvolution, which is clearly even more complicated than
the classical deconvolution problem. This inverse problem is
under-determined as we have more unknowns (image and blur)
than equations. For a long time, the problem seemed too diffi-
cult to solve for general blur kernels. Past algorithms usually
worked only for special cases, such as astronomical images
with uniform (black) background, and their performance de-
pended on initial estimates of PSFs. To name a few papers
from this category, consider [6]–[8] and survey [9]. Probably
the first attempt towards a more general blur estimation method
came from Fergus et al. [10], who proposed a variational
Bayesian method [11] with natural image statistics. This
triggered a furious activity in the computer vision community
and soon several conference papers appeared on the same topic
[12]–[17]. Levin et al. [15] pointed out that the joint posterior
probability of the image–blur pair favors a trivial solution
of the blur being a delta function and that marginalizing
the posterior (integrating out the image variable) is more
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appropriate. However, a closed form solution seldom exists
and a complicated approximation of the posterior is necessary,
which leads to cumbersome methods that can hardly handle
large blurs. In order to avoid these drawbacks, recent methods
still try to minimize directly the joint posterior probability,
since it can be done in an efficient way, but perform all sorts of
tricks to avoid the trivial solution. Jia [12] uses an alpha matte
to extract a transparency map and estimates the blur kernel
on the map. Joshi et al. [13] predicts sharp edges using edge
profiles and estimates the blur kernel from the predicted edges.
Cho et al. [16] applies a shock filter and gradient thresholding
to restore only strong edges and estimates the blur kernel from
the truncated gradient image. A similar idea further improved
by a kernel refinement step, was proposed recently by Xu et
al. [17]. In general, the single-channel blind deconvolution
methods get trapped in local minima and must estimate blurs
using a multiscale approach. They have many parameters that
influence the result considerably and are hard to tune. The
common trick for the methods to work is to have means to
predict strong edges. However, if the blurry image does not
have salient edges or it is corrupted by noise, all the single-
channel deconvolution methods usually fail.

The ill-posed nature of blind deconvolution can be remedied
to a great extent by considering multiple images. In this
case, the problem is referred to as multichannel (MC) blind
deconvolution and will be the subject of our investigation.
Acquired images must capture the same scene and differ
only in the blur kernel. This may not seem to be easy to
achieve in practice. However, the opposite is true. There are
many situations where multiple images blurred in a slightly
different way can be obtained. For example, if atmospheric
turbulence causes blurring, we can capture several images
(or video frames) in a row and due to the random nature of
turbulence, each image is almost surely blurred in a different
way. If camera shake causes blurring, continuous shooting (or
video capture) with the camera provides several images that
are blurred in a different way since our hand moves randomly.
MC deconvolution requires that the input images are properly
registered, which is one drawback compared to the single-
channel case. If the images are acquired as described above,
misregistration is only minor and even simple registration
methods will provide accurate and stable results; see e.g. [18]
for a survey of registration methods. We will thus assume that
the input images are registered up to some global translation. A
simple registration method for affine transforms is used in our
experiments as sketched in Sec. VI. More problematic is the
occurrence of space-variant blur, which often arises in practice,
such as rotating camera or profound depth of scene. We note
that the method proposed here assumes a space-invariant case
but by applying the method locally we can in theory deal with
space-variant cases as well. We refer the interested reader to
[19] and references therein for space-variant deconvolution.

One of the earliest intrinsic MC blind deconvolution meth-
ods [20] was designed particularly for images blurred by atmo-
spheric turbulence. Harikumar et al. [21] proposed an indirect
algorithm, which first estimates blur kernels and then recovers
the original image by a standard nonblind method. The blur
kernels are equal to the minimum eigenvector of a special

matrix constructed from the blurred input images. Necessary
assumptions for perfect recovery of the blurs are noise-free
environment and channel coprimeness, i.e. a scalar constant
is the only common factor of the blurs. Giannakis et al.
[22] developed another indirect algorithm based on Bezout’s
identity of coprime polynomials which finds restoration filters
and by convolving the filters with the input images recovers
the original image. Both algorithms are vulnerable to noise
and even for a moderate noise level restoration may break
down. Pai et al. [23] suggested two MC restoration algorithms
that, contrary to the previous two indirect algorithms, estimate
directly the original image from the null space or from the
range of a special matrix. Another direct method based on
the greatest common divisor was proposed in [24]. In noisy
cases, the direct algorithms are more stable than the indirect
ones. Approaches based on the ARMA (autoregressive moving
average) model are given in [25]. MC blind deconvolution
using a Bussgang algorithm was proposed in [26], which
performs well on spatially uncorrelated data, such as binary
text images and spiky images. Sroubek et al. [27] proposed
a method that reformulates Harikumar’s idea in [21] as a
MC regularization term and simultaneously minimizes an
energy function with respect to the image and blur kernels.
This allows us to handle inexact PSF sizes and compensate
for small misalignments in input images, which made MC
deconvolution more practical. However, small PSFs (less than
15×15) and images of size couple of hundreds of pixels were
only considered. It is mainly because of the inefficiency of the
applied numerical algorithm that the method is not converging
for larger blurs and images.

Here we propose a MC blind deconvolution method that can
handle very large blurs (e.g. 50 × 50) and images of several
Mpixels with even better accuracy and speed. The method is
based on the same idea as in [27] and it is formulated as a
constrained optimization problem. For image regularization,
we use total variation [28] and for blur regularization we use
the MC constraint proposed in [21]. We show that the original
MC constraint is not robust to noise and propose a simple
remedy, which requires a negligible extra computation but
achieves much better stability with respect to noise. Since the
optimization problem mixes the `2 and `1 norms, we use the
state-of-the-art numerical method of augmented Lagrangian
[5] to solve the blind deconvolution problem and achieve
very fast convergence. As it will be clear later, positivity of
blur kernels is an important constraint that must be included
in the optimization problem. We show that positivity can
be incorporated in augmented Lagrangian effortlessly without
affecting the convergence properties.

The paper is organized as follows. Sec. II defines notation
and presents the basic alternating minimization approach to
blind deconvolution. Image regularization in the form of
isotropic total variation is given in Sec. III. Sec. IV discusses
the problem of blur estimation in the MC scenario, influence of
noise and blur size, and proposes a novel blur kernel constraint
with sparsity and positivity regularization. A description of
the proposed algorithm is given in Sec. V together with im-
plementation details. The experimental section VI empirically
validates the proposed method and Sec. VII concludes this
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work.

II. MC BLIND DECONVOLUTION BASICS

We formulate the problem in the discrete domain and
use frequently vector-matrix notation throughout the text.
Images and PSFs are denoted by small italic letters and
their corresponding vectorial representations (lexicographi-
cally ordered pixels) by small bold letters. The MC blind
deconvolution problem assumes that we have K > 1 input
images {g1, . . . , gK} (gk : N2 → R) that are related to an
unknown image u : N2 → R according to a model

gk(i) = (hk ∗ u)(i) + nk(i), 1 ≤ k ≤ K , (1)

where hk denotes an unknown blur (kernel or point spread
function = PSF) and nk is additive noise in the k-th observa-
tion. Operator ∗ stands for convolution, and i ∈ N2. When no
ambiguity arises, we drop the multi-index i from the notation.
In the vector-matrix notation, (1) becomes

gk = Hku + nk = Uhk + nk , (2)

where matrices Hk and U perform convolution with hk and u,
respectively. To denote the i-th element in the vector notation,
we write [·]i, e.g., u(i) = [u]i. The size of images and blurs
(matrices and vectors) will be discussed later when necessary.

In the case of multiple acquisitions, we can not expect
that input images are perfectly spatially aligned. One can
model such misregistation by a geometric transformation Wk

that precede blurring Hk, i.e., HkWku. If Wk is invertible,
then HkWk = WkW−1

k HkWk = WkH̃k, where H̃k =
W−1
k HkWk. If Hk is a standard convolution with some PSF

hk and Wk is a linear geometric transformation, then the
new blurring operator H̃k remains a standard convolution
but with hk warped according to Wk. So for linear geomet-
ric transformations (such as affine) the order of geometric
transformation and blurring can be interchanged. We thus
assume that input images gk’s can be accurately registered by
linear transformations and a registration step preceding blind
deconvolution removes such geometric transformations.

It is well known that the problem of estimating u from
gk’s is ill-posed, thus this inverse problem can only be
solved satisfactorily by adopting some sort of regularization.
Formally, this leads to the following optimization problem:

min
u,{hk}

F (u, {hk}) +Q(u) +R({hk}) , (3)

where F is the data fidelity term and Q, R are regularizers
of the image and blurs, respectively. The formation model (1)
determines the data term leading to a standard formulation
F (u, {hk}) = γ

2

∑K
k=1 ‖u ∗ hk − gk‖2, where γ is inversely

proportional to the variance of noise nk and ‖·‖ denotes the `2
norm. For simplicity, we assume the same noise variance in all
frames and therefore single parameter γ suffices. The standard
approach to solve (3) is called alternating minimization and
will be adopted here as well. We split the problem into two
subproblems:

“u-step”: min
u
F (u, {hk}) +Q(u) (4)

check

convergence

no

yes

input blurred noisy

images:

sharp output image:

estim. blurs:

Initialize

precalculate

Fig. 1. Flowchart of the alternating minimization algorithm.

and
“h-step”: min

{hk}
F (u, {hk}) +R({hk}) , (5)

and alternate between them; see an algorithm flowchart in
Fig. 1. Convergence to the global minimum is theoretically
not guaranteed since the unknown variables are coupled in
the data term F . However, we show that each subproblem
separately converges to its global minimum and that it can
be solved efficiently by the augmented Lagrangian method
(ALM). This implies that in general the global minimum of (3)
is attainable after few alternations between the subproblems.
The next two sections describe in detail the image Q and blur
R regularization terms.

III. IMAGE REGULARIZATION

A popular recent approach to image regularization is to
assume that the unknown image u is represented as a linear
combination of few elements of some frame (usually an
overcomplete dictionary) and force this sparse representation
by using the `1 norm (or `0). Arguably, the best known and
most commonly used image regularizer, which belongs to the
category of sparse priors, is the total variation (TV) norm [28].

The isotropic TV model is the `1 norm of image gradient
magnitudes and takes the form

Q(u) =
∑
i

φ(∇u(i)) =
∑
i

√
(∇xu(i))2 + (∇yu(i))2 ,

(6)
where φ(x) = ‖x‖. The TV regularizer thus forces the solution
to have sparse image gradient. Depending on the type of data,
one can have sparsity in different domains. This modification
is however easy to achieve. All we have to do is to replace
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derivatives with a transformation (e.g. wavelet-like multi-scale
transform), which gives sparse representation of our data.

Using the vector matrix notation, the isotropic TV (6) can
be written as

Q(u) = Φ(Dxu,Dyu) =
∑
i

√
[Dxu]2i + [Dyu]2i (7)

where Dx and Dy are matrices performing derivatives with
respect to x and y, respectively.

IV. BLUR ESTIMATION AND REGULARIZATION

We first review a multichannel (MC) PSF estimation method
proposed in [21], [22], which was later used in MC blind
deconvolution as PSF regularizer [27]. We demonstrate that the
method is not robust to noise and show a novel improvement
in this aspect. To keep the notation simple, let us assume 1D
data and a two-channel convolution model (1) (K = 2). The
following discussion can be easily extended to 2D data and
any K > 2. The size of 1D data gk, u and hk is M , N and L,
respectively, with N � L. Noise nk is of the same size as gk.
Kernels hk’s can be of different size but we can always pad
the smaller ones with zeros to have the size of the largest one
and therefore L refers to the size of the largest PSF. To deal
correctly with convolution at image boundaries, we work with
convolution that returns a “valid” part of the support and thus
M = N −L+ 1. The matrices Hk and U in the vector-matrix
formation model (2) are thus of size M × N and M × L,
respectively.

Let ĥk be an estimate of hk. In general, the original PSF
size L is not known and therefore ĥk can be of different size
denoted here as L̂. Let us study 3 cases that will be used in
the following discussion: (a1) noiseless case (nk = 0), (a2)
PSF size is exactly known (L̂ = L), and (a3) original PSFs
are weakly coprime and images gk’s are persistently exciting
for size L. A set of kernels {hk} is called weakly coprime
[22], if there exists a kernel s and a set {h̃k} so that ∀k,
hk = s ∗ h̃k, then s is a scalar. In other words, if the kernels
are decomposable they must not have a common kernel. An
image z of size M is called persistently exciting [21] for size
L, if its “valid” convolution matrix Z of size (M−L+1)×L
has full column rank. Note that such an image will be also
persistently exciting for any size smaller than L.

A. The noiseless case

We first consider a situation, when all three assumptions
(a1), a(2), and (a3) hold. If ĥk = hk then

g2 ∗ ĥ1 − g1 ∗ ĥ2 = h2 ∗ u ∗ ĥ1 − h1 ∗ u ∗ ĥ2 = 0 , (8)

where we used the commutative property of convolution.
Rewriting the above relation in the vector-matrix notation, we
get

[G2,−G1]h = 0 , (9)

where h = [hT1 ,h
T
2 ]T . Matrices G1 and G2 denote “valid”

convolution with g1 and g2, respectively, and they are of size
(M−L+1)×L. Note that in the case of K > 2, it is sufficient
to consider all unordered pairs of images, which is equal to

the combinatorial number
(
K
2

)
. Thus, for example for K = 3

the number of image pairs is
(

3
2

)
= 3, (9) becomesG2 −G1 0

G3 0 −G1

0 G3 −G2

h = 0 .

Let us continue with K = 2 and define a symmetric, positive
semidefinite, 2L× 2L matrix

R = [G2,−G1]T [G2,−G1] . (10)

The computational complexity of constructing this matrix is
discussed in Sec.V-C. It follows from (9) that the correct
estimates of hk lie in the null space of R. We refer to
eigenvalues of R as λi’s (λ1 < λ2 < . . . < λ2L) and the
corresponding eigenvectors as vi’s. Since (a2) and (a3) hold,
R has exactly one zero eigenvalue λ1 and the eigenvector v1 is
equal to the correct PSFs hk stacked in one vector multiplied
by a scalar. Note that R is constructed solely from the input
images gk’s and it can be thus used for PSF estimation. An
example of R spectrum (plot of λi’s) is in Fig. 2(a) (solid
line). The matrix R was constructed from images blurred
by two 5 × 5 PSFs in Fig. 3(a). Notice the prominent kink
at the first eigenvalue λ1. The corresponding eigenvector v1

represents exactly the original PSFs. This fact is also illustrated
in Fig. 4(a), which plots the representation {αi} of h in the
basis {vi}, i.e.h =

∑2L
i=1 αivi. One can use R to build a

quadratic form
R(h) = hTRh (11)

and rewrite the v1 eigenvector estimation as a constrained
optimization problem

min
h
R(h) s.t. ∀k

∑
i

hk(i) = 1 . (12)

As proposed in [27], it is better to use the quadratic term R as
a PSF regularization term in the blind MC deconvolution prob-
lem (3). Because of the favorable spectrum of R, convergence
of such algorithms is very fast.

B. The noisy case

Let us see what happens if we remove (a1) and allow noise
to enter the formation model (1). We assume uncorrelated
normally distributed noise, nk ∼ N(0, σ2). It follows from
(2) that the convolution matrices Gk’s in (9) take the form

Gk = HkU + Nk , (13)

where this time Hk is of size (M − L) × M and Nk is a
noise convolution matrix constructed in the same way as Gk

but using elements of nk instead of gk. Substituting for Gk in
(9), we get

[G2,−G1]h ∼ N(0,Σ) , (14)

where Σ = cov(H2Uh1 + N2h1 − H1Uh2 − N1h2) =
cov(N2h1 − N1h2) = cov(H1n2 −H2n1) = H1cov(n2)HT

1 +
H2cov(n1)HT

2 = σ2(H1HT
1 + H2HT

2 ), since h2 ∗ u ∗ h1 =
h1 ∗ u ∗ h2 ⇐⇒ H2Uh1 = H1Uh2, which follows from
(8). Because of noise, we cannot expect that the smallest
eigenvalue of R will be zero anymore. Indeed, the kink
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visible in the noiseless case is completely leveled out in the
noisy case. Fig. 2(a) (dotted line) shows the spectrum of R
for the input data used before but corrupted by noise with
SNR = 40dB, which is a relatively small level of noise hardly
detectable by human eyes. Eigenvector v1 is not informative
any more and represents an erroneous solution as shown in
Fig. 3(b). The correct solution is a linear combination of all
eigenvectors with the weights almost randomly distributed as
seen in Fig. 4(b).

The maximum-likelihood estimation of kernels must include
the covariance matrix Σ in R, i.e.,

RΣ = [G2,−G1]TΣ−1[G2,−G1] . (15)

The spectrum of RΣ retains the kink at the first smallest
eigenvalue λ1 as Fig. 2(b) (solid line) shows. For comparison,
we show the original spectrum of R in (10) as a dotted line
(also in Fig. 2(a)). Eigenvector v1 of RΣ captures the original
PSFs as shown in Fig. 3(c). Encoding of the true kernels
h in the basis {vi} is relatively sparse and cluster around
the smallest eigenvalues; see Fig. 4(c). The same behavior
persists even for much higher noise levels (around 10dB). The
construction of RΣ has one severe drawback: we must know
the correct kernels hk’s a priori in order to build Σ. Since
our aim is to estimate PSFs this seem to be contradictory.
One can apply an iterative procedure and update Σ with every
new estimate of hk’s as proposed in [21]. Unfortunately, this
framework is not guaranteed to converge. In addition, inversion
of Σ can be very costly, which makes the whole calculation
of RΣ for large kernels (large L) impossible.

We propose to filter the blurred input images gk’s in such a
way, so that R without Σ in (10) will be close to RΣ in (15).
If we filter the input images with some kernel p, then

[PG2,−PG1]h ∼ N(0,ΣP) , (16)

where P performs convolution with p and the covariance
matrix is ΣP = σ2(H1PPTHT

1 + H2PPTHT
2 ) = σ2P(H1HT

1 +
H2HT

2 )PT . The best choice of the filter p is such that
ΣP = σ2I, since then the covariance matrix can be neglected.
However, this would again require a priori knowledge of
unknown kernels hk’s, since p depends on hk’s. Achieving a
diagonal correlation matrix means that we want to spatially
decorrelate the blur kernels. In the absence of any prior
knowledge of the blurs, we wish to employ a decorrelation
method that is sufficiently general. As such, given the well-
accepted assumption of sparsity on high frequency spatial
structures, the natural choice is to apply a Laplacian operator.
The justification is therefore empirical, but quite reasonable we
believe. In Fig. 5(a) we show a small part of the covariance
matrix Σ for our example with two blurs and in Fig. 5(b)
the covariance matrix ΣP with P being the Laplacian. The
covariance matrix of the filtered images is not diagonal but
close to diagonal. The Laplacian produces images, which are
relatively sparse and therefore spatially uncorrelated to a great
extent. The same holds for PSFs that blur the images, which
accounts for the close-to-diagonal covariance matrix.

Let ∆ denote a matrix that performs convolution with
a discrete Laplacian kernel l (in 1D l = [1,−2, 1]). The
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(a) (b)
Fig. 2. Spectra of kernel regularization matrices R in (10), RΣ in (15), and
R∆ in (17): (a) R in the noiseless (solid line) and noisy case (dotted line);
(b) RΣ (solid line) and R∆ (dashed line) in the noisy case.

(a) (b)

(c) (d)
Fig. 3. Point Spread Functions and their estimates (first eigenvectors) in the
noisy case: (a) two original PSFs of size 5 × 5, (b) estimation using R, (c)
estimation using RΣ, (d) estimation using R∆.

proposed modification of the matrix R is

R∆ = [∆G2,−∆G1]T [∆G2,−∆G1] . (17)

The matrix R∆ depends only on the input images gk’s
and the construction is trivial. The spectrum of this matrix
retains the kink (Fig. 2(b), dashed line) and relatively sparse
representation of h as shown in Fig. 4(d). The eigenvector v1

estimates hk’s in a similar way as the ideal RΣ, see Fig. 3(d).

C. Overestimated kernel size

It is unrealistic to assume that the kernel size L is exactly
known in practice. Let us thus consider the case when both
(a1) and (a3) hold but (a2) is violated with the kernel size
being overestimated, i.e., L̂ > L. We can readily see that if
ĥk = s ∗ hk, where s is an arbitrary spurious kernel of size
S = L̂− L+ 1, the multichannel constraint (8) still holds

g2 ∗ ĥ1− g1 ∗ ĥ2 = h2 ∗u ∗ s ∗h1−h1 ∗u ∗ s ∗h2 = 0 . (18)

In the language of matrix eigenvalues and eigenvectors this
fact translates as follows. The matrix R defined in (10) is
of size L̂ × L̂. The correct kernels lie again in the null
space of R, but this time the matrix nullity is of the size of
the spurious kernel, i.e., nullity(R) = S. The regularization
term (11) built from R becomes less restrictive (more “flat”)
because of the increased nullity. Therefore, convergence of
any minimization algorithm, which estimates PSFs using the
proposed regularizer R, is seriously hindered in the case
of overestimated kernel size. Note that if the kernel size
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Fig. 4. Representation of PSFs in the eigenvector basis of regularization
matrices: (a) R in the noiseless case, (b) R in the noisy case, (c) RΣ in the
noisy case, (d) R∆ in the noisy case.

(a) (b)
Fig. 5. Covariance matrices: (a) calculated from the original PSFs, (b)
calculated from the Laplacian of PSFs.

L̂ is underestimated, (18) does not hold anymore and we
cannot estimated the kernels at all. We will not consider
the underestimated case and instead focus on improving the
stability of the overestimated case.

One can be tempted to assume that the unconstrained
optimization problem as defined in (5) would eliminate the
ambiguity inherent in R(h). Using the vector-matrix notation,
this problem rewrites as

min
h

γ

2

2∑
k=1

‖Ûhk − gk‖2 +R(h) , (19)

where Û is M × L̂ convolution matrix with the estimate û
of the original image u. If the estimate û = u, the above
optimization problem is well-posed and in fact we do not
need the regularizer R at all. However, this scenario is unre-
alistic, since we do not know the original image. Alternating
minimization often starts with û equal to a so-called average
image, i.e., û = 1

K

∑
k gk. To illustrate the behavior of the

data term F (û, {ĥk}) with respect to the spurious kernel s,
we conducted the following experiment. We generated two
blurry signals g1 and g2 using some random positive PSFs
h1 and h2 of size L. We set L̂ = L + 1 so the spurious
kernel s is of size 2, s = [s1, s2]. Let us consider kernels of
the form ĥk = s ∗ hk that preserve energy

∑
i ĥk(i) = 1,

then R(ĥ) = 0 for any s and s2 = 1 − s1. The data term

F (û, ĥk) with û being the average image is a function of s1

and we plot its values for different s1 in Fig. 6. The minimum
is reached for a negative value of s1 and the same behavior
was observed for any pair of blurs h1, h2. The data term is
thus biased towards kernels with small negative values and
the unconstrained optimization problem (19) is inappropriate
if the kernel size is overestimated. An intuitive explanation
is the following. Since we use the average image, the value
of F would reach its minimum for some ĥk’s close to delta
functions. Such a solution is however heavily penalized by R,
which allows only PSFs of the form s ∗ hk. In order to get
closer to the delta-function solution, s must act as an inverse
filter to all positive hk and this means that it must perform
differentiation and hence negative values in s are inevitable.

Forcing positivity on kernels is the remedy to the above
problem. Clearly this approach is possible only for positive
kernels. We encounter positive-only kernels in many deconvo-
lution problems and making this assumption is thus not very
restrictive. With the positivity constraint the above problem
can be solved by means of quadratic programming. Here we
show a different approach, which will allow us an elegant
integration in the ALM and much faster implementation than
quadratic programming. We have empirically observed that
forcing sparsity on hk further boosts convergence. In order
to guarantee both positivity and sparsity, we propose to use a
new kernel regularizer

R(h) =
δ

2
hTR∆h + Ψ(h) , (20)

where

Ψ(h) =

K∑
k=1

L̂∑
i=1

ψ(hk(i)) , ψ(t) =

{
t if t ≥ 0

+∞ otherwise
(21)

and δ is the weight that controls the influence of the MC
constraint R∆. The definition of ψ ensures positivity by
absolutely penalizing negative values and forces sparsity by
calculating the `1 norm of positive kernels.

Note that it is not necessary to explicitly include the
constraint ∀k

∑
i hk(i) = 1 as in (12), which preserves the

average gray value in images. This constraint is automatically
enforced by the fidelity term

∑2
k=1 ‖u ∗ hk − gk‖ in (19). If

the mean value of the estimated image u is equal to the mean
value of gk, then by solving (19) (h-step) we always preserve∑
i hk(i) = 1. The u-step in (4) does not change the mean

value of u either because the fidelity term is present there as
well. Therefore the condition is not modified in alternating
minimization and we only have to guarantee that initial PSFs
follow the constraint.

D. Kernel coprimeness

Let us consider the assumption (a3) of persistently exciting
images and weakly coprime kernels. The condition of per-
sistently exciting image is a very mild one. Usually M � L,
convolution matrices Gk’s have many more rows than columns
and the probability that the matrices will not have full column
rank is thus very small. We do not consider here degenerate
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Fig. 6. The data term F (û, {s ∗ hk}) as a function of the first elements s1
of the 2× 1 spurious vector s = [s1, s2], where s2 = 1− s1. The minimum
is not reached for s = [0, 1] (delta function) but for s with a small negative
value.

cases, such as perfectly uniform or periodic images, that may
not be persistently exciting.

The condition of weakly coprime kernels may seem to be
more problematic. In the 1D case (signals), any kernel of
length L can be decomposed (factorized) into L − 1 kernels
(root factors) of size 2, which is the direct consequence of the
Fundamental Theorem of Algebra1; see for example [29]. It is
therefore likely that there might exist a factor common to all
kernels hk’s. In the 2D case (images), no such factorization
in general exists and as also discussed in [21], coprimeness
holds deterministically for most of the 2D cases of practical
interest.

If the common factor exists despite its low probability,
kernel estimation still partially works. We are able to recover
kernels without their common factor and the common factor
remains as a blur in the estimated image.

V. OPTIMIZATION ALGORITHM

Alternating minimization, which solves the MC blind de-
convolution problem (3), consists of two subproblems: min-
imization with respect to the image (u-step) and the mini-
mization with respect to the blurs (h-step). Both subproblems
share some similarities, because both the image (7) and blur
regularizer (20) are not smooth and introduce nonlinearity in
the problem. Direct minimization in each step would be thus
a slow process. A simple procedure that solves such problems
is called variable splitting, which decouples the `2 and `1
portions of the problem (3) by introducing auxiliary variable
and converting each subproblem to two simpler minimization
steps. We then apply the ALM, which is equivalent to the
split Bregman iterative method [4], to solve the subproblems.
Our derivation follows the work presented in [5] and partially
in [4]. Unique aspects of our algorithm will be emphasized.
From now on, we will exclusively use the vector-matrix
notation and stack all observations into one system by using
compact notation g = [gT1 , . . . , gTK ]T , h = [hT1 , . . . ,h

T
K ]T ,

H = [HT
1 , . . . ,H

T
K ]T , and the convolution matrix U will now

denote a block diagonal matrix with K blocks, where each
block is the original U from (2).

1However, some of the factors may contain complex values.

A. U-step

Using the TV regularizer (7), minimization with respect to
the image (4) writes as

min
u

γ

2
‖Hu− g‖2 + Φ(Dxu,Dyu) (22)

Applying variable splitting, we replace Dxu by vx and Dyu
by vy . This yields a constrained problem

min
u,vx,vy

γ

2
‖Hu−g‖2 + Φ(vx, vy) s.t. vx = Dxu, vy = Dyu ,

(23)
which is equivalent to (22). The ALM (or split-Bregman
iteration) tackles the constrained problem (23) by considering
a functional

Lu(u, vx, vy) =
γ

2
‖Hu− g‖2 + Φ(vx, vy)+

α

2
‖Dxu− vx − ax‖2 +

α

2
‖Dyu− vy − ay‖2 (24)

and solving it with an iterative algorithm:

Algorithm: û = u-step(u0)

1: Set v0
x = v0

y = a0
x = a0

y = 0 and j = 0
2: repeat
3: uj+1 = arg minu Lu(u, vjx, vjy) ⇐⇒

[HTH + α
γ (DTxDx + DTy Dy)]uj+1 = HT g +

α
γ [DTx (vjx + ajx) + DTy (vjy + ajy)]

4: {vj+1
x , vj+1

y } = arg minvx,vx Lu(uj+1, vx, vy) ⇐⇒
[vj+1
x ]i = [Dxuj+1 − ajx]i[s]−1

i max
(
[s]i − 1

α , 0
)
,

[vj+1
y ]i = [Dyuj+1 − ajy]i[s]−1

i max
(
[s]i − 1

α , 0
)
,

where
[s]i =

√
[Dxuj+1 − ajx]2i + [Dyuj+1 − ajy]2i

5: aj+1
x = ajx − Dxuj+1 + vj+1

x

aj+1
y = ajy − Dyuj+1 + vj+1

y

6: j ← j + 1
7: until stopping criterion is satisfied
8: return û← uj

The iterative algorithm consists of three update steps: lines
3, 4, and 5. Variables ax and ay are introduced by the ALM.
Their update on line 5 is trivial. It is worth drawing a relation
of the ALM to a penalty method. If we omit the updating
step for ax and ay , and keep ax = ay = 0, the above
algorithm defaults to the penalty method. The penalty method
converges to the solution of constrained problem (23) only if
we keep increasing α to infinity while iterating as advocated
in [30]. This is however not practical as the problem becomes
gradually more ill-posed with increasing α. This drawback
is avoided in the ALM. Since Φ is a lower semicontinuous,
proper, convex function 2, and [DTx ,D

T
y ]T has full column rank

then, if (23) has a solution, the u-step algorithm converges
to this solution even for α relatively small and fixed. This
important theorem was proved in [31].

Since Lu in (24) is quadratic with respect to u, minimization
on line 3 is a solution to a set of linear equations. We show
later that this can be solved efficiently in the Fourier domain.

2In our case, Φ is continuous and thus lower semicontinuous
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Fig. 7. Soft thresholding: (a) shrinkage formula (26) for a nonzero threshold
1/α (solid) and for 1/α = 0 (dashed); (b) corresponding φα in (25) for a
nonzero threshold 1/α (solid) and for 1/α = 0 (dashed). Note that φα is
a relaxed form of the `1 norm, which is the absolute value (dashed) in this
simple case.

The beauty of variable splitting is that minimization with re-
spect to vx and vy is, by definition, the Moreau proximal map-
ping [32] of Φ applied to Dxuj+1−ajx and Dyuj+1−ajy . The
problem can be solved for each i-th element independently.
Let t = [[vx]i, [vy]i]

T and r = [[Dxu− ax]i, [Dyu− ay]i]
T be

vectors of size 2× 1, the problem on line 4 is of the form

φα(r) = min
t

(α
2
‖r− t‖2 + ‖t‖

)
(25)

and as proved in [30] the minimum is reached for

t =
r
‖r‖

max

(
‖r‖ − 1

α
, 0

)
, (26)

which is a generalized shrinkage formula for vectors. For r
scalar, (26) corresponds to a well known soft-thresholding
formula plotted as solid line in Fig. 7(a). It is interesting to
note that after substituting for t in (25), φα(r) (solid line in
Fig. 7(b)) can be written in a closed form

φα(r) =

{
α
2 ‖r‖

2 if ‖r‖ < 1
α

‖r‖ − 1
2α otherwise ,

(27)

which is a relaxed form of the original φ(r) = ‖r‖ in the
isotropic TV definition (6). If α → ∞ then φα → φ and the
corresponding graphs are plotted as dashed lines in Fig. 7.

B. H-step

The kernel estimation proceeds analogously to the u-step.
Using the proposed regularizer (20), minimization with respect
to the PSFs (5) writes as

min
h

γ

2
‖Uh− g‖2 +

δ

2
hTR∆h + Ψ(h) (28)

Applying variable splitting w = h yields a constrained
problem

min
h,w

γ

2
‖Uh− g‖2 +

δ

2
hTR∆h + Ψ(w) s.t. w = h , (29)

Then we consider a functional

Lh(h,w) =
γ

2
‖Uh−g‖2 +

δ

2
hTR∆h+Ψ(w)+

β

2
‖h−w−b‖2

(30)
and solve it with an iterative algorithm:

Algorithm: ĥ = h-step(h0)

1: Set w0 = b0 = 0 and j = 0
2: repeat
3: hj+1 = arg minh Lh(h,wj) ⇐⇒

[UTU + δ
γR∆ + β

γ I]hj+1 = UT g + β
γ (wj + bj)

4: wj+1 = arg minw Lh(hj+1,w) ⇐⇒
[wj+1]i = max

(
[hj+1 − bj ]i − 1

β , 0
)

5: bj+1 = bj − hj+1 + wj+1

6: j ← j + 1
7: until stopping criterion is satisfied
8: return ĥ← hj

Matrix I denotes identity of size KL̂×KL̂. As in the u-step,
the h-step iterative algorithm consists of three update steps:
lines 3, 4, and 5. Since Lh in (30) is quadratic with respect
to h, minimization on line 3 is a solution to a set of linear
equations. Minimization with respect to w is again the Moreau
proximal mapping, this time, of Ψ applied to hj+1 − bj and
it is solved element-wise. Let t = [w]i and r = [h − b]i, the
problem on line 4 is of the form

ψβ(r) = min
t

(
β

2
(r − t)2 + ψ(t)

)
, (31)

where ψ is our positivity-sparsity enforcing function defined
in (21) and plotted as dashed line in Fig. 8(b). After some
manipulation, one can see that the minimum is reached for

t = max

(
r − 1

β
, 0

)
, (32)

The plot of this “one-sided” thresholding function is in
Fig. 8(a), solid line. Using the thresholding function, a closed
form of ψβ is

ψβ(r) =

{
β
2 r

2 if r < 1
β

r − 1
2β otherwise

(33)

with a plot in Fig. 8(b), solid line. The function linearly
increases in the positive domain, while in the negative domain
it increases quadratically. If β → ∞ then ψβ → ψ and
the thresholding function in (32) approaches the dashed line
in Fig. 8(a). However as in the u-step, we do not need to
increase β to infinity for the h-step algorithm to converge
to the solution of the constrained problem (29). The ALM
approach with its extra variable b converges. Note, that ψ
must be a lower semicontinuous, proper, convex function for
the method to converge, which is the case. Interestingly, if
we replaced in the definition (21) infinity with some large
but finite number, the resulting function would not be convex
any more. Infinity in the definition might look dangerous but it
turns out to give an elegant solution in the form of thresholding
function (32).

C. Implementation

We have analyzed the main points (u and h step) of the
optimization algorithm. Now we proceed with the description
of algorithm’s main loop and computational cost of individual
steps. Let N denote the number of pixels in the output image u
and L̂ the number of pixels in our overestimated PSF support.
The main loop of the MC blind deconvolution alternating
minimization algorithm looks as follows:
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Fig. 8. Thresholding in the blur domain: (a) shrinkage formula (32) for a
nonzero threshold 1/β (solid) and for 1/β = 0 (dashed); (b) corresponding
ψβ in (31) for a nonzero threshold 1/β (solid) and for 1/β = 0 (dashed).

MC blind deconvolution
Require: K ≥ 2 input images {gk}; blur size L̂; parameters

α, β, δ, γ
1: Set j = 0, ĥ

0

k’s to delta functions, and û0 = 0
2: Calculate R∆

3: repeat
4: ûj+1 = u-step(ûj , ĥ

j
)

5: ĥ
j+1

= h-step(ûj+1, ĥ
j
)

6: j ← j + 1
7: until stopping criterion is satisfied
8: return û← ûj

The stopping criterion, which we typically use, is ‖ĥ
j
−

ĥ
j−1
‖/‖ĥ

j
‖ < tol. The same can be used in the h-step and

likewise in the u-step using u instead of h. Calculation of
R∆ can be done using the Fast Fourier Transform (FFT)
without explicitly constructing the convolution matrices Gk’s.
Since Gk’s are “valid” convolutions, we can construct only
one row of R∆ at a time and the overall complexity is thus
O(KL̂N logN).

In general, the most time consuming is the u-step, which
requires an inversion of the huge N × N matrix [HTH +
α
γ (DTxDx + DTy Dy)]. One can apply iterative solvers, such as
conjugate gradient, to avoid direct inversion, but we can do
even better and have a direct solver. In our formulation, H, Dx,
and Dy are convolution matrices. To avoid any ringing arti-
facts close to image boundaries, they should perform “valid”
convolution, i.e., the output image is smaller and covers a
region where both the input image and convolution kernel
are fully defined. If we properly adjust the image borders,
by using for example function edgetaper in MATLAB, we
can replace “valid” convolution with block-circulant one and
ringing artifacts will be almost undetectable. The TV regu-
larizer also helps to reduce such artifacts. FFT diagonalizes
block-circulant convolution matrices and inversion is thus
straightforward. The remaining update steps for vx (vy) and
ax (ay) are simple and can be computed in O(N) time. The
u-step is thus carried out with overall O(N logN) cost.

Unlike the u-step, which is calculated almost entirely in the
Fourier domain, we perform the h-step in the image domain,
since we need the constrained kernel support L̂. Otherwise,
R∆ becomes a very uninformative regularizer as explained in
Sec. IV-C. On line 3 of the h-step algorithm, we have to invert
the matrix [UTU + δ

γR∆ + β
γ I], which is of size KL̂ ×KL̂

and thus much smaller than the matrix in the u-step. Typically,

the size of blurs is not more than 40× 40 pixels (L = 1600)
and for two input images (K = 2) the matrix size is 3200 ×
3200, which is still relatively small3. One can again apply an
iterative solver such as conjugate gradient, but we found it
much more efficient to store the whole matrix and perform
Cholesky decomposition to solve this problem. This can be
computed in O((KL̂)3) time. Update steps for w and b are
again very simple and require O(KL̂) operations.

Setting parameters is based solely on our empirical studies
and cannot be considered as a rigorous procedure. The opti-
mization method has four parameters. We have noticed that
in general they can be fixed relative to one of them, γ, which
depends on the noise level. This observation is not superficial.
Authors in [5] (as well as is [4] for the split Bregman method)
also recommend to set parameters introduced by the ALM,
in our case α and β, with respect to the weight γ of the
fidelity term. Parameter δ, which is the weight of the MC
constraint term hTR∆h, is proportional to the noise variance
as shown in (16) and therefore should be fixed to γ as well.
The role of thumb is to set γ equal to a ratio of signal and noise
variances, i.e., SNR = 50dB ⇒ γ = 105 or SNR = 20dB ⇒
γ = 102, etc.4 Then we have found that choosing α = 10−1γ,
β = 104γ, δ = 103γ usually results in good convergence. For
higher noise levels (smaller γ) we observed that δ = 102γ is
better.

In our experiments, the number of iteration in the main
loop, and in the u-step and h-step, typically did not exceed
10. In order to further decrease computational time, we tried to
modify the algorithm in several ways. For example, we found
it very effective to divide the algorithm into two stages. In the
first stage, we select a small (typically 256×256) central region
from input images and run the algorithm on this selection.
In the second stage, we take the estimated PSFs from the
first stage and apply one u-step on the whole image in order
to obtain the final reconstructed image. The usable output of
the first stage are thus PSFs and not the reconstructed central
region. We observed that fixing γ to 10 (even for SNR above
10dB) in the first stage and setting other parameters according
to formulas as shown above produces accurate PSFs in a more
reliable way. This convergence boost can be explained by
noting that the reconstructed image for lower γ becomes more
piece-wise constant (patchy) with only strong edges preserved,
which makes the h-step in the fidelity term focus only on areas
around strong edges and neglect areas with details that are
prone to noise.

Another modification, which proved to be a minor im-
provement, was to estimate PSFs in a multi-scale fashion.
Initializing with upsampled PSFs from the courser levels tend
to decrease number of iterations. However, we observed that
more than 2 levels (half-sized and original scale) are not
necessary and that the choice of upsampling algorithm is
important. Simple linear upsampling generates PSFs that are
wider than the true PSFs on that scale and we waste several
iterations of the algorithm to shrink the PSFs back. In our

3A matrix of such size, if stored in double precision, occupies approxi-
mately 78MB of memory, which current computers can easily handle.

4We use a standard definition of the signal to noise ratio, SNR =

10 log( s
2

σ2 ), where s2 and σ2 are the signal and noise variances, respectively.
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tests, we were using a Lanczos interpolation method, which
seems to give the best results.

To provide the cost of individual steps in terms of computer
time, we performed blind deconvolution of two 1Mpixel
images with PSF size 40 × 40 on a 2.7GHz Pentium Dual-
Core CPU using our MATLAB implementation. The cost of
one iteration inside the u-step and h-step is around 0.8s and
4.5s, respectively. Calculating the matrix R using the whole
images, takes in this case 11 minutes, which is clearly the most
time consuming step. However as pointed out earlier, we can
calculate R on a small region. For example for 256×256 block,
the calculation (same PSF size 40×40) then takes around 30s.

VI. EXPERIMENTS

In order to illustrate the favorable convergence properties
of the proposed algorithm, we performed two sets of exper-
iments. The first set works with synthetically blurred data
and compares convergence and quality of PSF and image
estimation for different SNRs and blur sizes. The second set
of experiments compares the proposed algorithm with another
multichannel blind deconvolution method of Katkovnik et al.
[33] and demonstrates deconvolution of real photos taken with
a standard digital camera.

The setup for the synthetic data experiment was the follow-
ing. We took the Lena image, Fig. 9(a), and convolve it with
two 9 × 9 blurs, Fig. 9(b), and add noise at three different
levels, SNR = 50, 30, 10dB. An example of blurry images for
the least noisy case is in Fig. 9(c). To evaluate performance
in every iteration j of the main loop, we use normalized root
mean square error defined as NRMSE = ‖ĥ

j
− h∗‖/‖h∗‖,

where ĥ
j

is the estimation of PSFs after j iterations and
h∗ are the true PSFs. NRMSE as a function of iterations
and estimated PSFs for different situations are summarized
in Fig. 10. NRMSE is plotted in logarithmic scale. Three
graphs correspond to three levels of SNRs. In each case we
ran the algorithm with three different PSF supports: 9 × 9
(solid line), 15 × 15 (dotted line) and 21 × 21 (dashed line).
The corresponding estimated sharp images for PSF support
21 × 21 are summarized in Fig. 11. One can see that the
proposed method provides accurate results regardless of the
degree of PSF size overestimation and shows robustness with
respect to noise.

There are several interesting points we can draw from the
obtained results. First of all, the mean square error (MSE)
decreases very quickly. In most of the cases, after 5 iterations
MSE remains almost constant. For overestimated blur supports
(dotted and dashed line) MSE reaches almost the same level
as for the correct blur support (solid line), but the decrease is
slightly less sharp (particularly visible for SNR = 50dB). This
is logical, since in the overestimated case the dimensionality
of the problem is higher and the MC constraint R∆ is less
effective as discussed in Sec. IV-C. Clearly, as the noise level
increases, the lowest attainable MSE increases as well. For
SNR = 50dB, Fig. 10(a), estimated PSFs are very accurate.
The corresponding estimated image in Fig. 11(a) is almost per-
fect. For SNR = 30dB, Fig. 10(b), the estimated PSFs take the
shape of the true PSFs but are slightly blurred. The estimated

image in Fig. 11(b) still looks very sharp and artifact-free. As
the noise level increases further to SNR = 10dB, Fig. 10(c),
the quality of deconvolution starts to deteriorate but the TV
denoising feature of the method is evident as seen in Fig. 11(c).

There is very little in the literature to which we can directly
compare, which uses multiple frames in the process. Most of
the multichannel work presented in the introduction is mainly
theoretical and present no algorithms for large scale problems.
Comparing to single-channel results is possible, but we do not
feel that this is fair to these other methods. To our knowledge
the only recent method, which is intrinsically multichannel and
claims to work with large kernels, was proposed by Katkovnik
et al. [33]. This method performs alternating minimization
by switching between minimization with respect to the image
(corresponds to our u-step) and minimization with respect to
the kernels (corresponds to our h-step). A variation of the
steepest descent algorithm is used for minimization. Every-
thing is implemented in the Fourier domain as in our case. For
minimization, we use ALM in order to work with nonlinear
regularization terms in an efficient manner. Katkovnik et al.
use a variation of the steepest descent algorithm with only
quadratic terms. Instead of using regularization, they project
current estimation after every iteration into an admissible set
of solutions (such as positive PSFs with limited support and
image intensity values between 0 and 1) and perform spatially
adaptive image denoising based on intersection of confidence
intervals (ICI) rule. To compare the methods, we took a data
set generated by Levin et al. [15], which contains 4 images
blurred by 8 PSFs providing 32 blurred images; see Fig. 12(a-
b). The blurred images are real and captured by a digital
camera. The ground truth PSFs in Fig. 12(b) were estimated
by a collection of point sources installed in the observed scene.
We divided the blurred images into 8 groups (each containing
one image blurred by 4 blurs) and applied both methods.
NRMSE of the estimated images and blurs are plotted in
Fig. 12(c-d). One can see that in half of the cases our method
provides better PSFs (in the NRMSE sense) and outperforms
the other method in the image NRMSE in all 8 cases. In
addition, our method requires only 10 iterations of alternating
minimization whereas the other method requires roughly 100
iterations to achieve these results. 5

In order to demonstrate, that the algorithm works well in
many practical applications, we took several pairs of images
with a 3Mpixel digital camera Olympus C3020Z and applied
the proposed algorithm. Light conditions were low and the
shutter speed of the camera was typically longer than 1/10s.
Such setting produces nice blurry images, when the camera
is held in hands. It is of course necessary to first register the
input photos before the algorithm can be applied. In our case,
we do not have to deal with heavily misregistered data, since
the images were take one after another with a minimum delay.
A fast registration method, which proved to be adequate and
was used in these experiments, works as follows. A reference
image is selected from the input set {gk} and the other

5It is true that we perform at most 10 iterations inside both u-step and h-
step. Katkovnik’s method cannot perform many iterations inside their u-step
and h-step, since they need to project into the admissible set frequently and
so they do 10 steps of steepest descent in the h-step and 1 step in the u-step.
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(a) (b) (c)
Fig. 9. Test data set: (a) original image 256× 256, (b) two blurs 9× 9, (c) example of an input blurry pair with SNR = 50dB.
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Fig. 10. Estimated PSFs and plots of normalized root mean square errors for different noise levels in input blurry images: (a) 50dB, (b) 30dB, (c) 10dB.
Three different PSF supports were considered in each noisy case: correct PSF size 9× 9 (solid line), and two overestimated sizes 15× 15 (dotted line) and
21× 21 (dashed line).

(a) 50dB (b) 30dB (c) 10dB
Fig. 11. Estimated sharp images for the PSF size set to 21× 21 and three different noise levels: (a) 50dB, (b) 30dB, (c) 10dB. Results are arranged as in
Fig. 10. The first row shows one of the input images and the second row shows the estimated image.
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Fig. 12. Comparison with Katkovnik et al. [33]: Ground truth data from Levin’s data set [15] (a) 4 images and (b) 8 blur kernels, which generates 32 blurred
images. We split the kernels into two groups (b1, b2) and got 8 input sets each containing 4 blurred images. (c) shows NRMSE of estimated sharp images
and (d) NRMSE of estimated kernels. Left bars are results of our method and right bars are results of [33].

images (called sensed images) are sequentially registered to
the reference one. The reference and sensed image is first
divided into several non-overlapping blocks (typically 6× 6).
Phase correlation is applied in each block to determine integer
translation vector between the reference and the sensed block.
The estimated shifts (6 ∗ 6 = 36) are used to calculate
parameters of an affine transform. The sensed images are then
interpolated using the estimated affine transforms.

Reconstruction results for two different data sets are in
Figs. 13 and 14. Input image pairs exhibit relatively large
blurring but the reconstructed images are sharp and with
negligible artifacts (see image close-ups for better visual
comparison). Estimated PSF pairs very well model motion
blurs induced by camera shake. Some artifacts are visible
in the second data set (Fig. 14(c)) around the snow heap
in the left bottom corner. It is very likely, that the blur is
slightly different in this part due to a different distance from
the camera or due to rotational movement during acquisition.
Since our method assumes space-invariant blurs, such artifact
are however inevitable.

VII. CONCLUSION

We have presented a new algorithm for solving multichannel
blind deconvolution. The proposed approach starts by defining
an optimization problem with image and blur regularization
terms. To force sparse image gradients, the image regularizer
is formulated using a standard isotropic total variation. The
PSF regularizer consists of two terms: MC constraint (matrix
R∆) and sparsity-positivity. The MC constraint is improved
by considering image Laplacian, which brings better noise
robustness at little cost. Positivity helps the method to con-
vergence to a correct solution, when the used PSF size is
much larger than the true one. The proposed approach solves
the optimization problem in an iterative way by alternating
between minimization with respect to the image (u-step) and
with respect to the PSFs (h-step). Sparsity and positivity imply
nonlinearity, but by using the variable splitting and augmented
Lagrangian method (or split-Bregman method) we can solve
each step efficiently and moreover convergence of each step
is guaranteed. Experiments on synthetic data illustrate fast
convergence of the algorithm, robustness to noise, and stability
in the case of overestimated PSF sizes. Experiments on large

real data underline practical aspects of the algorithm. Current
and future work involves extending this approach to the space-
variant blur and analyzing the convergence properties.
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Fig. 13. Real data set: (a) - (b) two input blurry images of size 2048× 1536, (c) estimated output sharp image using the proposed algorithm, (d) close-ups
of the input images and the output, and estimated PSFs of size 50× 30.
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Fig. 14. Real data set: (a) - (b) two input blurry images of size 2048× 1536, (c) estimated output sharp image using the proposed algorithm, (d) close-ups
of the input images and the output, and estimated PSFs of size 40× 40.
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the Czech Republic. Filip Šroubek is an author of seven book chapters and
over 80 journal and conference papers on image fusion, blind deconvolution,
super-resolution, and related topics.

Peyman Milanfar received the BS degree in electri-
cal engineering and mathematics from the University
of California, Berkeley, in 1988, and the MS, EE,
and PhD degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 1990, 1992, and 1993, respectively. Until 1999,
he was a senior research engineer at SRI Interna-
tional, Menlo Park, California. He is currently a
professor of electrical engineering at the University
of California, Santa Cruz. From 1998 to 2000, he
was a consulting assistant professor of computer

science at Stanford University, California, where he was also a visiting
associate professor in 2002. His research interests include statistical signal,
image processing, and inverse problems. He won the US National Science
Foundation CAREER award, and the best paper award from the IEEE Signal
Processing Society in 2010. From 1998 to 2001, he was an associate editor
for the IEEE Signal Processing Letters, and was an associate editor for the
IEEE Transactions on Image Processing from 2005-2010. He is currently
on the editorial board of the SIAM Journal of Imaging Science, and Image
and Vision Computing. He is a member of the Signal Processing Society
Image, Video, and Multidimensional Signal Processing (IVMSP) Technical
Committee. He is a fellow of the IEEE.


