
Chapter 2

Introduction to Object

Recognition

This chapter is a brief introduction to the principles of automatic object recognition.
We introduce the basic terms, concepts, and approaches to feature-based classification.
For understanding the rest of the book, the most important part of this chapter is
the introduction of the term invariant and an overview of the invariants which have
been proposed for visual object description and recognition. In addition to that, we
concisely review the existing classifiers. The chapter starts with a short introduction
to feature metric spaces1.

2.1 Feature space

As we mentioned in Chapter 1, the features are measurable quantitative characteristics
of the objects and images. From a mathematical point of view, the features are
elements of a feature space.

Let us now look closer at the feature space, at its required and desirable properties,
and at some connections with metric spaces, equivalence relations, set partition, and
group theory. At this moment, we are not going to define any particular feature set.
We stay on a general level such that the following considerations are valid regardless
of the specific choice of the features.

All object recognition algorithms that act in a feature space use a measure of
object similarity or dissimilarity as the central tool. Hence, most of the feature
spaces are constructed such that they are metric spaces. For certain special features
where the construction of a metric is not appropriate or possible, we weaken this
requirement and create pseudometric, quasimetric, semimetric, or premetric spaces.
In some other cases, the similarity/dissimilarity measure is not explicitly defined, but
it is still present implicitly.

1Readers who are familiar with these topics at least on an intermediate level may skip this chapter
and proceed directly to Chapter 3, where the theory of moment invariants begins.
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2.1.1 Metric spaces and norms

A metric space is an ordered pair (P, d), where P is a non-empty set and d is a metric
on P .

Definition 2.1: A real-valued function d defined on P × P is a metric if it satisfies
the four following axioms for any a,b, c ∈ P .

1. d(a,b) ≥ 0 (positivity axiom),

2. d(a,b) = 0 ⇔ a = b (identity axiom),

3. d(a,b) = d(b, a) (symmetry axiom),

4. d(a,b) ≤ d(a, c) + d(b, c) (triangle inequality).

The first axiom follows from the other three ones and could be omitted. The
function d is also called distance function or simply distance between two points. The
conditions 1–4 express our intuitive notion about the distance between two points. If
axiom 2 is weakened such that only d(a, a) = 0 is required but possibly also d(a,b) = 0
for some distinct values a 6= b, then d is called pseudometric. If d satisfies 1, 2, and
4 but it is not necessarily symmetric, we call it quasimetric; semimetric is such d
that satisfies the first three axioms, but not necessarily the triangle inequality. The
weakest version is a premetric, which only requires d(a,b) ≥ 0 and d(a, a) = 0. Some
of these modifications were inspired by real-life situations. Imagine the “distance”
which is measured by the time you need to get from place a to place b by bike.
Obviously, if the road is uphill, then d(a,b) > d(b, a) and d is a quasimetric. If the
distance between two countries is defined as the shortest distance between the points
on their borders, then the distance between any two neighboring countries is zero and
we get a (symmetric) premetric. The reader can find many other examples easily.

For the given set P , there may exist many (even infinitely many) various metrics
which all fulfill the above definition but induce different distance relations between
the points of P . Hence, when speaking about a metric space, it is always necessary
not only to mention the set P itself but also to specify the metric d.

The definition of a metric space does not require any algebraic structure on P .
However, most feature spaces are normed vector spaces with the operations addition
and multiplication by a constant and with a norm ‖ · ‖. Let us recall that any norm
must satisfy certain conditions.

Definition 2.2: A real-valued function ‖ · ‖ defined on a vector space P is a norm if
it satisfies the four following axioms for any a,b ∈ P and a real or complex number
α.

1. ‖a‖ ≥ 0,

2. ‖a‖ = 0 ⇒ a = 0 ,

3. ‖α · a‖ = |α| · ‖a‖ (homogeneity axiom),
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4. ‖a + b‖ ≤ ‖a‖ + ‖b‖ (triangle inequality).

Similarly to the case of metric, the first axiom follows from the homogeneity and
triangle inequality and could be omitted.

If we now define d as
d(a,b) = ‖a− b‖,

then, thanks to the properties of the norm, such d actually fulfills all axioms of a
metric. We speak about the metric that is induced by the norm2. Any norm induces
a metric, but only some metrics are induced by a norm. The norm is a generalization
of our intuitive notion of the vector “length” and can be also understood as a distance
of a from the origin. If P is a space with a scalar product, then the norm is induced
by this scalar product as ‖a‖ =

√

(a, a).
Feature spaces of finite dimensions3 are mostly (but not necessarily) equivalent

to n-dimensional vector space of real numbers Rn, and we use the notation a =
(a1, a2, . . . , an)T . The most common norms in such spaces are ℓp norms

‖a‖p = (

n
∑

i=1

|ai|
p)1/p

and weighted ℓp norms

‖a‖wp = (
n
∑

i=1

wi|ai|
p)1/p,

where p ≥ 1 and wi are positive constants. The ℓp norms are well known from linear
algebra and for certain p’s they are of particular interest. For p = 1, it turns to
the city-block norm popular in digital geometry. Euclidean norm, probably the most
intuitive and the most frequently used norm ever, is a special case if p = 2 (we mostly
drop the index p for simplicity when using Euclidean norm and write just ‖a‖). If
p → ∞, the ℓp norm converges to the maximum norm ℓ∞

‖a‖∞ = maxi(|ai|)

which is also known as the chessboard norm. If 0 < p < 1, then the triangle in-
equality is violated, and the corresponding ℓp-norm is actually only a seminorm, but
it still finds applications: for instance, in robust fitting the feature points with a
curve/surface.

Introducing the weights wi into the ℓp norm is of great importance when con-
structing the feature space and often influences significantly the classification results.
The goal of the weights is to bring all the individual features (i.e. components ai
of the feature vector) to approximately the same range of values. It is equivalent to

2Although this is the most common way to induce a metric by the norm, it is not the only one.
However, the other options are rather obscure and of low importance when working in feature spaces.
An example is the rail metric defined as d(a,b) = ‖a‖ + ‖b‖ for distinct a,b and d(a, a) = 0. Its
name somehow ironically reflects the fact that a railway trip usually passes through the main hub
regardless, where the final destination is.

3Feature spaces of infinite dimensions are of very little practical interest, and we do not discuss
them in this book.
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a non-uniform scaling of the feature space. Why is it so important? The features
may be quantities of very different character and range. Suppose that, for example,
a1 ∈ (−1, 1) while a2 ∈ (−1010, 1010). When using the pure Euclidean norm, we
actually lose the information that is contained in the feature a1 because the a2 values
are so big that ‖a‖

.
= |a2|. However, if we use the weights w1 = 1 and w2 = 10−20,

then small relative changes of a1 have approximately the same impact on the norm
as small relative changes of a2.

There are of course many vector norms which are not ℓp-norms. An example is a
Hamming norm (sometimes referred to as ℓ0-norm), which is simply the number of
the non-zero components of a.

Although the (weighted) metrics induced by ℓp norms are almost a standard choice,
there exist feature spaces where these metrics are not appropriate. Consider a feature
space that consists of individual features, which are very different from one another
in their nature. The first feature is real-valued, the second is a periodic quantity (for
instance the orientation angle or the phase of a complex number), the third feature is a
logical variable, and the last one expresses a subjective rating on the scale “excellent-
good-fair-average-poor”. Here the ℓp norm would not be a good choice, and we have
to construct the metric carefully such that it reflects the information contained in all
features and weights it according to its actual importance for the given task.

2.1.2 Equivalence and partition

The most transparent way to explain the principles of object classification is through
two elementary terms of the set theory – partition and equivalence. Given a non-empty
set M , a set of its subsets {M1, . . . ,MC} such that4

1. Mi 6= ∅ ∀i,

2. Mi ∩Mj = ∅ ∀i 6= j,

3.
C
⋃

i=1

Mi = M

is called partition of M .
Partition is closely connected with the equivalence relation on M × M . Let us

recall that a binary relation ≈ is called equivalence if and only if it is reflexive,
symmetric, and transitive, that is,

1. a ≈ a for any a ∈ M ,

2. If a ≈ b, then b ≈ a for any a, b ∈ M ,

3. If a ≈ b and b ≈ c, then a ≈ c for any a, b, c ∈ M .

Any equivalence on M ×M unambiguously determines a partition of M and vice
versa. The components Mi are then called equivalence classes. Clearly, if equivalence
≈ is given on M × M , we can choose an arbitrary a ∈ M and find a set Ma =

4We use a notation for finite number of components C because object classification is always to a
finite number of classes. A set partition in general may have an infinite (countable or uncountable)
number of components.
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{x ∈ M |a ≈ x}. This is our first partition component. Then we find b ∈ M such
that b /∈ Ma and construct the partition component Mb. We repeat this process until
the whole M is covered. The sets Ma,Mb, . . . fulfill the definition of the partition.
The backward implication is even more apparent. If partition {M1, . . . ,MC} of M is
given, then the relation

a ≈ b ⇔ a, b lie in the same component Mi

is an equivalence on M ×M .
If we want to abstract away from the properties that may change inside the equiv-

alence classes, we may work with a set of the classes that is called the quotient set
and is denoted as (M/ ≈). Working with quotient sets is very common in mathe-
matics because it helps to concentrate on the substantial properties of the objects
and to ignore the insignificant ones. If there has been some algebraic and/or met-
ric structure defined on M , it usually smoothly propagates into (M/ ≈). In object
classification, the classes (determined by the user) are in fact equivalence classes in
the object space. In face recognition, for instance, the person should be identified
regardless of the head pose, facial expression, and hair style; in character recognition,
the type and the color of the pen, the font, size and orientation of the character are
absolutely insignificant parameters, which should in no way influence the recognition
(provided that we are interested in “reading” the characters, not in font/size recog-
nition). Hence, the equivalence classes are defined as “all pictures of the person A”
and “all possible appearance of the letter B”, etc. The variability within each class,
which is insignificant for the given task, is called intraclass variability. The intraclass
variability can be described by an operator D, which maps any object to another
object of the same class. The relation between two objects

f ≈ g ⇔ There exists D such that g = D(f) or f = D(g)

should be an equivalence that induces the same partition into classes as the one speci-
fied by the user. Note that the operator D is not defined “automatically” by selecting
the object space. In one object space, we may have several meaningful task formu-
lations, each of them leading to distinct space partitions. As an example, consider
again the space of portrait photographs. One task could be person recognition, the
other one gender recognition, and yet another one classification into age categories.

Very often, D describes all possible object degradations that may arise in the
given task: if f is an “ideal” image of an object from the class Mf , then g = D(f)
can be understood as a degraded version of f but still belonging to Mf . The ideal
classification algorithm should assign g into the class Mf regardless of particular form
and parameters of D because they are usually unknown.

From the above considerations, we can clearly see one of the fundamental require-
ments of object recognition. The operator of the intraclass variability D must be
closed under a composition in each equivalence class. If D is applied twice (possibly
with different parameters), then the composition Dc = D1D2 must be of the same
type. Without this closure property the task would be ill-posed because the “classes”
would not be equivalence classes and would not define a partition, so an object could
be an element of multiple classes. Since the closure property is often coupled with
associativity and invertibility of D (which is, however, much less important here), the
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intraclass transformations form a group (or a monoid if D is not invertible) and the
action of D is a group action. Typical examples of intraclass variations that form a
group are object rotation, translation, and scaling (similarity group), affine transfor-
mation (affine group), perspective projection (projective group). Blurring the image
by a Gaussian kernel does not form a group because it is not invertible but forms a
monoid. On the other hand, quadratic transformation of the image coordinates is not
closed and does not form equivalence classes.

2.1.3 Invariants

Now we approach the explanation of the central term of the feature-based object
recognition – the notion of invariants. The invariant feature or simply the invariant
is a functional that maps the image space into the feature space such that I(f) depends
on the class f belongs to but does not depend on particular appearance of f . In other
words, I(f) = I(D(f)) for any f and any instance of D. In yet other words, I is
actually defined on a quotient object space factorized by D. Simple examples of the
invariants under a similarity transformation are angles and ratios, the object size is
invariant to rotation, and the property of two lines “to be parallel” is invariant under
affine transformation.

The functional I that satisfies the above definition is sometimes called the absolute
invariant, to emphasize the difference from relative invariants. The relative invariant
satisfies a weaker and more general condition I(f) = Λ(D)I(D(f)), where Λ is a scalar
function of the parameters of D. If D is for instance an affine transformation, Λ(D)
is often a function of its Jacobian. Relative invariants cannot be used directly for
classification since they vary within the class. It is usually not difficult to normalize
a relative invariant by another relative invariant to cancel the factor Λ(D) and to get
an absolute invariant.

The invariance property is the necessary but not sufficient condition for I to be
really able to classify objects (for example, the trivial feature I(f) = 0 is perfectly
invariant but completely useless). Any functional I defines another equivalence (and
hence another partition and also another quotient space) in the object space

f ∼ g ⇔ I(f) = I(g).

The partition induced by equivalence ∼ cannot be arbitrary. Since I is supposed
to be an invariant, the quotient space (M/ ∼) can only be the same or coarser than
(M/ ≈). In an ideal case both partitions are equal, i.e. (M/ ∼) = (M/ ≈), and I
is said to be discriminative because it has distinct values on objects that belong to
distinct user classes. If it is not the case, then there exist at least two objects f and
g belonging to different classes but fulfilling I(f) = I(g), which means they are not
discriminable by means of I.

Invariance and discriminability are somehow opposed properties. One should keep
in mind that the invariance property is not something “always advantageous”.

Making the invariance broader than necessary decreases the recognition power (for
instance, using affine invariants instead of similarity invariants leads in the feature
space to mixing all parallelograms together). The user must tune these two properties
of the features with respect to the given data and to the purpose. Choosing a proper
trade-off between the invariance and the discrimination power is a very important
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task in feature-based object recognition (see Fig. 2.1 for an example of a desirable
situation).

Figure 2.1: Two-dimensional feature space with two classes, almost an ideal example.
Each class forms a compact cluster (the features are invariant to translation, rotation,
scaling, and skewing of the characters) and the clusters are well separated from one
another (the features are discriminative although the characters are visually similar
to each other).

Usually, a single real-valued invariant does not provide enough discrimination
power, and several invariants I1, . . . , In must be used simultaneously. Then we speak
about an invariant vector and the feature space has n dimensions. The invariant
vector should be independent, which means that none of its components is a function
of the others5. This is a natural and important requirement. Dependent invariants do
not contribute to the discrimination power of the vector, they only increase the dimen-
sionality of the feature space. This leads not only to increasing the time complexity
of the classification algorithms and of the feature measurement (and in practice often
to a growth of the cost), but also may cause a drop of performance.

Apart from the object recognition, invariants often play an important role in the
reconstruction of the original object from its feature vector. We face this situation
when the invariants are considered an alternative representation of the objects and
are stored in a database instead of the original images. The loss-less reconstruction is
possible only if the vector is complete, which means that other independent features do
not exist. Such a reconstruction is of course possible only modulo D since there is no
way to recover the particular appearance from the invariants. In case of digital images,
complete invariant vectors usually have almost the same number of components as
the number of the pixels in the input image. Hence, the requirement of completeness
is for classification purposes often highly excessive and useless.

5The feature dependence/independence in this sense is not necessarily connected with the cor-
relation, which is evaluated pair-wise on the training set and reflects a linear component of the
dependency only.



8 CHAPTER 2. INTRODUCTION TO OBJECT RECOGNITION

2.1.4 Covariants

Unlike the invariants, there exist features C(f) that change within the classes, i.e.
C(f) 6= C(D(f)). They are called covariants6. A covariant usually does not have the
ability to discriminate the classes (if it had such ability, it could be turned into an
invariant by thresholding) but carry the information about the particular intra-class
parameters of f , which may be very useful when transforming the object into certain
canonical (standard) positions. Such transformation is called object normalization. If,
for instance, the intra-class variation is a rotation, then the directions of the principal
axes of the objet are covariants. When defining the standard position such that the
principal axes are horizontal and vertical, we need to know their actual orientation
in order to properly rotate the object. If we want to reconstruct the object including
its particular position in the class, we also need, in addition to a complete invariant
vector, a complete covariant vector.

2.1.5 Invariant-less approaches

For the sake of completeness, let us mention that along with the invariant approach,
there exist two other approaches to visual object recognition – brute force and image
normalization. In the brute force approach, we search the parametric space of all pos-
sible image degradations. That means the training set of each class should contain
not only all class representatives but also all their rotated, scaled, blurred, and de-
formed versions. Clearly, this approach would lead to extreme time complexity and is
practically inapplicable. In the normalization approach, the objects are transformed
into a certain standard position before they enter the classifier. This is very efficient
in the classification stage, but the object normalization itself usually requires solving
difficult inverse problems that are often ill-conditioned or even ill-posed. For instance,
in case of image blurring, “normalization” means in fact blind deconvolution [1], and
in case of spatial image deformation, “normalization” requires performing registration
of the image to some reference frame [2].

2.2 Categories of the invariants

The existing invariant features for object description and recognition can be cate-
gorized from various points of view (see the survey papers [3] and [4]). The main
categorization criteria, which have appeared in literature, are the following.

1. The dimension of the objects the invariants describe,

2. The type of the invariance (i.e., the type of the intra-class variations),

3. The range of intensity values of the object,

4. The part of the object which is necessary for the invariant computation,

5. The mathematical tools used for the construction of the invariants.

6The terminology has not been unified here. Some authors use the term “variant feature”. The
term “covariant” has also other meanings in tensor algebra, in programming languages, and in
quantum mechanics.
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The first three categorizations are very natural and straightforward; they, however,
sort the invariants into only a few categories. When sorting according to the di-
mensionality7, we speak about 2D invariants, 3D invariants, and d-D invariants for
d > 3. According to the type of the invariance, we have geometric invariants or
intensity-based ones. In this first category we recognize translation, rotation, scaling,
affine, and projective geometric invariants. Invariants to intensity variations exist
with respect to linear contrast stretching, non-linear intensity transformations, and
convolution. Sorting according to the range of the intensity values distinguishes in-
variants of binary, gray-level, and color objects and of vector-valued images.

The fourth viewpoint reflects what part of the object is needed to calculate the in-
variant. Global invariants are calculated from the whole image (including background
if no segmentation has been performed). Most of them include projections of the im-
age onto certain basis functions and are calculated by integration. Comparing to local
invariants, global invariants are much more robust with respect to noise, inaccurate
boundary detection, and similar factors. On the other hand, their serious drawback is
the fact that any local change of the image influences the values of all invariants and
is not “localized” in a few components only. This is why global invariants cannot be
used when the object in question is partially occluded by another object and/or when
a part of it is out of the visual field. Local invariants are, on the contrary, calculated
from a certain neighborhood of dominant points only. Their primary purpose is to
recognize objects which are visible only partially. Differential invariants are typical
representatives of this category. Semi-local invariants attempt to keep the strengths
of the two above groups and to overcome their weaknesses. They divide the object
into stable parts and describe each part by some kind of global invariants.

Categorization according to the mathematical tools used is probably the most de-
tailed type. It provides a grouping, where the common factor is the mathematical
background, which at the same time often implicitly determines the feature catego-
rization according to the previous four criteria. One can find numerous categories
of this kind in the literature, depending on the “depth” of sorting. Here we present
eight basic ones – simple shape features, complete visual features, transformation
coefficient features, wavelet-based features, textural features, differential invariants,
point set invariants, and moment invariants.

2.2.1 Simple shape features

Simple shape features, sometimes referred to as visual features, are low-dimensional
features of very limited discriminability. On the other hand, they are easy to compute
(or even visually estimate) and interpret, which implies their popularity. They have
been designed for binary objects (shapes) and are defined for 2D objects only, although
some of them can be readily extended to 3D as well. They are mostly based on the
measurement of object similarity to a certain reference shape – a circle, an ellipse, or
a rectangle.

One of the oldest and widely used is compactness defined as

c =
4πS(A)

O(A)2
,

7The term “dimension” here refers to the dimension of the object/images, not to the dimension
of the invariant vector.
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where S(A) is the area and O(A) is the perimeter of object A. It holds 0 < c ≤ 1,
where c = 1 comes only if A is a circle. The name of this feature originates from our
intuitive notion of the circle as the “most compact” object. That is why this feature
is sometimes called circularity, although other definitions of circularity which come
from the fit of the object boundary by a circle can be found in the literature (see [5],
for instance).

Figure 2.2: The object and its convex hull.

The feature, which reflects the similarity between the object and its convex hull
is called convexity, defined as

v =
S(A)

S(CA)
,

where CA is the convex hull of A (see Fig. 2.2). Clearly, 0 < v ≤ 1, and v = 1 for
convex shapes only.

Another feature called rectangularity measures the similarity to the minimum
bounding rectangle RA (see Fig. 2.3)

r =
S(A)

S(RA)
.

Again, 0 < r ≤ 1 and the equality arises for rectangles only. There is another popular
feature of this kind called elongation. It is again derived from the minimum bounding
rectangle as the ratio of its side lengths.

Two other simple features refer to the properties of ellipses. The ellipticity is
given by an error of the fitting the object by an ellipse. The eccentricity is simply the
eccentricity of the fitted ellipse (other definitions can be found in literature).

Another scalar feature is the bending energy [6] of the object boundary. The
bending energy is in the discrete case defined as a sum of the square of the boundary
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Figure 2.3: The object and its minimum bounding rectangle.

curvature over all boundary points, normalized by the total boundary length. We
can imagine this feature as a potential energy of an ideally flexible metal wire which
is deformed into the shape of the boundary. The bending energy is minimum for a
circle, which corresponds to the physical interpretation.

All the simple shape features mentioned above are inherently invariant to transla-
tion, rotation, and uniform scaling. Individual discrimination power of each of them
is poor, but when used together, they may provide enough discriminability to resolve
at least easy tasks or to serve as pre-selectors in a more difficult recognition. To learn
more about simple shape features we refer to the monograph [5] and to the papers by
Rosin et al. [7, 8, 9, 10, 11, 12].

2.2.2 Complete visual features

A natural step forward is to stay with binary objects but to require a completeness
of the features. This cannot be fulfilled by the features from the previous section.
Probably the simplest way to reach the completeness while keeping the translation,
rotation, and scaling invariance is to use polar encoding of the shape.

We explain this possibility for star-shaped objects first (the object is called star-
shaped if any half line originating in the object centroid intersects the object boundary
just once). Let us put the coordinate origin into the object centroid and construct
boundary radial function r(θ), θ ∈ 〈0, 2π). This function fully describes the object
(see Fig. 2.4). Instead of computing features of the object, it is sufficient to compute
features of the radial function. The radial function is invariant to object translation
and undergoes a cyclic shift when the object rotates. The change of the starting
point at the boundary has the same impact. If we now sample the radial function
in a constant angular step, we obtain the radial shape vector [13] (see Fig. 2.5). The
radial shape vector can be used directly as the feature vector. We can control the
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Figure 2.4: Radial function of the object.

discrimination power by increasing/decreasing the shape vector length (i.e., by chang-
ing the angular sampling step). If the similarity (distance) between two radial shape
vectors a,b is defined as the minimum of d(a,b), where the minimum is searched
over all cyclic shifts of b, then we get a reasonable metric which ensures invariants to
rotation. Scaling invariance can be achieved by normalizing the shape vector by its
largest element.

The concept of the polar encoding can be generalized into the shape matrix, which
is a binary matrix of user-defined dimensions [14] (see Fig. 2.6). A polar grid of
concentric circles and radial lines is placed into the object centroid such that the
largest circle circumscribes the object. Each segment of the grid corresponds to one
element of the shape matrix. If the segment is covered by the object, the corresponding
value in the matrix is 1 and is zero otherwise. Since the segments have different sizes,
appropriate weighting of the matrix elements was proposed in [15]. The shape matrix
can be used for any object of a finite extent regardless of its particular shape. It
works also for the shapes with holes and with multiple isolated components.

The chain code, which was introduced by Freeman in [16] and further developed in
[17, 18] has become very popular in loss-less binary image compression and can also
be considered a complete visual feature. The discrete object boundary is represented
by a sequence of elementary directional unit vectors, each direction being encoded
by an integer (usually from 0 to 3 or from 0 to 7, depending on the topology). If
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Figure 2.5: Star-shaped object and its radial shape vector.

Figure 2.6: The object and its shape matrix.

implemented as a relative (differential) code, it provides rotational invariance while
the invariance to the starting point is achieved by cyclic shifting of the code. Chain
codes are, however, not frequently used as features for object recognition because
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there is no simple metric which would be consistent with the actual difference between
the objects. Hence, a comparison of two chain codes should be done via maximum
substring matching, which is relatively slow.

2.2.3 Transformation coefficient features

These features have been primarily designed for binary objects, both 2D and 3D. They
are calculated from the coefficients of certain transformation of the object boundary.
Fourier transformation has been used most often for this purpose [19, 20, 21] but
using Walsh-Hadamard and other similar transformations is also possible. The key
idea behind these features is to use polar or log-polar transformations in order to
transfer rotation and scale into a (cyclic) shift, which is much easier to handle because
it preserves the Fourier transformation magnitude as is implied by the Fourier Shift
Theorem.

If an object has a well-defined boundary radial function r(θ), we compute its
1D Fourier transformation. Since the object rotation results in a cyclic shift of r(θ)
and the scaling with a factor s results in the radial function s · r(θ), the Fourier
transformation magnitude is under these two transformations only multiplied by s.
Hence, the magnitude normalized by the first coefficient is invariant w.r.t. TRS
(translation, rotation, and uniform change of scale) transformation. In practice, we
take only the first n coefficients of discrete Fourier transformation; by increasing n we
increase the discriminability. These features are known as the Fourier descriptors.

In the general case, the function r(θ) does not exist, but we still can construct the
Fourier descriptors in another way. Consider the boundary pixels (xk, yk) as points
in the complex plane zk = xk + iyk. Now we can calculate discrete Fourier transfor-
mation of (z1, z2, . . .). The position of the object in the plane is encoded solely in the
Fourier coefficient Z0. Discarding them, we get a translation invariance. Rotation
invariance along with the invariance to the origin of the sampling is achieved by tak-
ing the magnitudes |Zk|’s, similarly to the previous case. Finally, the normalization
by |Z1| yields the scaling invariance. Alternatively, we can use the phase of Z1 for
normalization of the other phases to rotation and sampling origin. The phases are
not changed under scaling.

Fourier descriptors are very popular and powerful features in the presence of TRS
transformation. In case of binary images, they compete with moment invariants. In a
different form, they can be applied to graylevel images as well. If only an image trans-
lation was considered, we could use the Fourier transformation magnitude directly as
an invariant. If only a rotation and scaling (but no translation) were present, then
we could make a log-polar transformation of the image and again to use its Fourier
transformation magnitude. However, if a full TRS transformation is present, we have
to insert an intermediate step. First, we make a Fourier transformation of the original
image and take its magnitude (which is invariant to shift). The log-polar transforma-
tion is now applied in the frequency domain to the magnitude. Then another Fourier
transformation of this magnitude yields the TRS invariants.

Radon transformation offers another, yet similar possibility, of to handle object
rotations. The rotation (and the choice of the origin of angular projections) generates
a one-dimensional cyclic shift in the Radon spectrum, which can be again eliminated
by 1D Fourier transformation or by calculating the distance over all possible shifts.



2.2. CATEGORIES OF THE INVARIANTS 15

2.2.4 Textural features

A particular group of features has been designed for description of images with promi-
nent textures. The texture is a repeating pattern in graylevels or colors which may
not be strictly periodic – it may contain irregularities and random perturbations. For
objects made from materials such as wood, sand, skin, and many others, their texture
is a dominant property; more class-specific than the shape and the color (see Fig. 2.7
for some examples).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: Examples of textures. The texture is often a more discriminative property
than the shape and the color.

All textural features try to somehow capture the spatial appearance and its pos-
sible repetition frequency in different directions. In principle, any local directional
features can be used for texture description. Autocorrelation function and its spec-
trum are straightforward general solutions. The review of textural features can be
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found in [22] and in the monograph [23], where the reader will also find many other
relevant topics such as texture image preprocessing and texture modeling.

One of the first specialized textural features were proposed by Haralic et al. [24]
in the form of spatial-dependence matrix. This idea has been re-used many times
and has led to co-occurrence matrices. Another approach models the texture as a
random process (AR, ARMA, and Markov models have been used for this purpose),
the parameters of which serve as the features. This approach requires estimating the
process parameters from the image, which may not be trivial.

Very powerful textural features are the local binary patterns (LBPs) introduced by
Ojala et al. [25]. The LBPs are high-dimensional features the core idea of which is to
encode, for each pixel, whether or not its value is higher than that of the neighboring
pixels. The LBPs exist in many versions and extensions, the most important are
multiresolution LBPs [26] and 3D LBPs [27].

Most recently, the attention of researchers has been drawn to the Bidirectional
texture function (BTF), which describes a kind of texture the appearance of which
depends not only on the position in the scene but also on the view and illumination
spherical angles. BTF is highly redundant description, so for recognition it is usually
used after a lossy compression. The notion of BTF was introduced by Dana et al.
[28]. Later on, the methods for modelling, recognition, and synthesis of the BTF were
developed by Haindl et al. [29, 30].

2.2.5 Wavelet-based features

In fact, this category could be included in the previous two sections, but due to its
importance it is handled separately. Wavelet-based features make use of the wavelet
transformation (WT) [31], which provides a spatial-frequency representation of the
analyzed image (see Fig. 2.8 for an example), and thus it is able to capture both
the shape and textural information of the object. The two most frequent ways to
incorporate wavelet transformation in the object description are the following. For
binary objects, the features are constructed from 1D WT of the boundary [32, 33]
which is analogous to Fourier descriptors. Using a proper boundary parametrization,
these features can be made even affine invariant [34, 35]. A comparison of the efficiency
of the Fourier and wavelet boundary coefficients can be found in [36] (the authors
claimed wavelets slightly outperform Fourier descriptors).

Graylevel images are described by features which are calculated from individual
bands of 2D WT and capture the object texture. The texture-oriented descriptors
are based on the representation of an energy distribution over wavelet subbands,
such as overall energy, entropy, or covariance between decompositions of individual
color channels (in the case of color images) [37]. The decomposition can be done
by means of wavelet transformation often using Gabor or Daubechies wavelets, but
other approaches are used too, such as wavelet packet transformation [38] and wavelet
frames. One of the first applications was described in [39]. Great attention has been
paid to proper selection of the bands used for the descriptor construction [40].

Recently, with increasing computational power, the third approach to wavelet-
based object description has begun to appear. The overcomplete representation of
objects is created by means of all coefficients at chosen coarser levels of the object
wavelet decomposition [41]. Such feature vectors are then used as object descriptors.
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(a) (b)

Figure 2.8: The original Barabara image (left) and its wavelet decomposition into
depth two (right).

2.2.6 Differential invariants

Differential invariants are local features based on the derivatives of the image intensity
function in case of graylevel objects or, when dealing with binary objects, on the
derivatives of the object boundary.

In the case of binary objects with a smooth boundary, the invariants are calculated
for each boundary point as functions of the boundary derivatives from order two to
eight. In that way they map the boundary onto a so-called signature curve which is an
invariant to affine or even projective transformation. The signature curve depends at
any given point only on the shape of the boundary in its immediate vicinity. Any local
change or deformation of the object has only a local impact on the signature curve.
This property of locality, along with the invariance, makes them a seemingly perfect
tool for recognition of partially occluded objects. Recognition under occlusion can be
performed by substring matching in the space of the signatures. Differential invariants
of this kind were discovered by Wilczynski [42], who proposed to use derivatives up
to the eighth order. Weiss introduced differential invariants to the computer vision
community. He published a series of papers [43, 44, 45] on various invariants of orders
from four to six. Although differential invariants may seem to be promising from
a theoretical point of view, they have been experimentally proven to be extremely
sensitive to inaccurate segmentation, sampling errors, and noise.

Such high vulnerability of “pure” differential invariants led to development of
semi-differential invariants. This method divides the object into affine-invariant parts.
Each part is described by some kind of global invariants, and the whole object is then
characterized by a string of vectors of invariants. Recognition under occlusion is again
performed by maximum substring matching. Since inflection points of the boundary
are invariant to affine (and even projective) deformation of the shape, they have
become a popular tool for the definition of the affine-invariant parts. This approach
was used by Ibrahim and Cohen [46], who described the object by the area ratios of
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two neighboring parts. Horacek et al. [47] used the same division of the object by
means of inflection points but described the cuts by affine-invariant modification of
the shape vector. Other similar variants can be found in [48] and [49].

Figure 2.9: Semi-differential invariants. The object is divided by inflection points.
Both convex and concave cuts can be used for a description by global invariants.

As a modification which does not use inflection points, concave residua of a convex
hull can be used. For polygon-like shapes, however, inflection points cannot be used
since they do not exist. Instead, one can construct the cuts defined by three or four
neighboring vertices. Yang and Cohen [50] and Flusser [51] used the area ratios of
the cuts to construct affine invariants. A similar method was successfully tested for
perspective projection by Rothwell et al. [52].

A slightly different approach, but still belonging to semi-differential invariants, is
the curvature scale space (CSS) proposed in [53]. It detects inflection points of the
shape and investigates the movement trajectory and the “lifetime” of each inflection
point under progressive smoothing of the boundary by a Gaussian filter; see Fig-
ure 2.9. Under smoothing, neighboring inflection points converge to each other and
then vanish. The number of inflection points on each smoothing level, the speed of
their convergence and the number of smoothings that each inflection point survives
are encoded into a curve which characterizes the object (although not completely).
This curve can be made rotationally (and even affine) invariant and for objects with
a number of inflection points provides enough discriminability.

Local differential invariants exist also for graylevel and color images. Probably
the most famous representative is the scale-invariant feature transformation (SIFT)
[54]. This method detects dominant points in the image at different scales, looking
for the extrema of the scale space created by means of the difference of Gaussians
(DoG) and describes their neighborhood by means of orientation histograms. The
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descriptors of individual dominant points are then concatenated into a long feature
vector, which is invariant to image translation, scaling, and rotation, and robust to
illumination changes. SIFT method has inspired numerous authors to improvements,
modifications, and developing of other methods of the same nature, among which the
histogram of oriented gradients (HOG) [55] and speeded-up robust features (SURF)
[56] belong to the most popular ones.

2.2.7 Point set invariants

Invariants of point sets form a relatively narrow, specialized category. They were
developed for binary objects with polygonal boundary (i.e., for objects where the
differential invariants are not well defined). The vertices of the polygon fully describe
the complete shape, so it is meaningful to use them for feature generation. Point set
invariants were usually constructed to be invariant w.r.t. projective transformation
and also to the vertex labeling order. They are defined either as products or ratios
of the distances between two points or as products or ratios of various triangle areas
which are formed by point triplets [57, 58, 59, 60]. The simplest projective invariant
of this kind – the cross ratio – was known already to ancient mathematicians Euclid
and Pappus.

2.2.8 Moment invariants

Moment invariants are special functions of image moments. Moments are scalar quan-
tities, which have been used for more than hundred years to characterize a function
and to capture its significant features. They have been widely used in statistics for
description of the shape of a probability density function and in classic rigid-body
mechanics to measure the mass distribution of a body. From the mathematical point
of view, moments are “projections” of a function onto a polynomial basis (similarly,
Fourier transformation is a projection onto a basis of harmonic functions). Numerous
polynomial bases have been used to construct moments. The standard power ba-
sis {xpyq} leads to geometric moments; various orthogonal bases lead to orthogonal
moments. Although all polynomial bases are theoretically equivalent, it makes sense
to use different bases (and different moments) in different situations, either for the
sake of simplicity or because some bases provide better numerical properties than the
others.

The history of moment invariants began in the 19th century, many years before
the appearance of the first computers, under the framework of the group theory and of
the theory of algebraic invariants. The theory of algebraic invariants was thoroughly
studied by famous German mathematicians P. A. Gordan and D. Hilbert [61] and was
further developed in the 20th century in [62, 63] and [64], among others.

Moment invariants were first introduced to the pattern recognition and image pro-
cessing community in 1962, when Hu employed the results of the theory of algebraic
invariants and derived his seven famous invariants to rotation of 2-D objects [65].
Since that time, thousands of papers8 have been devoted to various improvements,

8According to [66], about 18,000 research papers relevant to moments and/or moment invariants
in image analysis have appeared in SCOPUS.
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extensions and generalizations of moment invariants and also to their use in many ar-
eas of applications. Moment invariants were extensively reviewed in four monographs.
The first one by Mukundan [67], published as early as in 1998, covered only selected
subtopics. The second one by Pawlak [68] is focused mainly on computational aspects
of moments and detailed error analysis in the discrete domain rather than on their
invariant properties. Various moment invariants in 2D have been the main topics of
the monograph by Flusser et al. [69]. The most recent book edited by Papakostas
[66] reflects the latest development on the field.

Moment invariants have become important and frequently used shape descriptors.
Nowadays, they exist for 2D as well as for 3D objects with a possible extension into
arbitrary dimensions in some cases. We have moment invariants for binary, gray-level,
color, and even vector-valued images. Concerning the type of invariance, there exist
moment invariants to similarity and affine object transformations as well as invariants
w.r.t. image blurring with certain types of the blurring filters.

Even though moment invariants suffer from certain intrinsic limitations (the worst
of which is their globalness, which prevents a direct utilization for occluded object
recognition), they frequently serve as the “first-choice descriptors” and as the reference
method for evaluating the performance of other shape features.

2.3 Classifiers

A classifier is an algorithm which “recognizes” objects by means of their representa-
tions in the feature space and assigns each object to one of the pre-defined classes
ω1, . . . , ωC . The input of a classifier is the feature vector (I1(f), . . . , In(f))T of an un-
known object f , and the output is the label of the class the object has been assigned
to. The classifiers are totally independent of what the original objects actually look
like and also of the particular kind of features Ik.

In a supervised classification, the classes are specified beforehand by means of a
training set. The training set is a set of objects the class membership of which is
supposed to be known. It should contain enough typical representatives of each class
including intra-class variations. Selection of the training set is the role of a human
expert in the application domain. This is not a mathematical/computer science prob-
lem and cannot be resolved by any automatic algorithm because it requires a deep
knowledge of the application area. Since the training set is selected manually, it often
contains misclassified objects. This is caused not only by human mistakes but also
because some objects may be so deformed or of such non-typical appearance that the
expert may be in doubt which class they should be assigned to.

In an unsupervised classification, the training set is not available; all objects are
of unknown classification at the beginning. Sometimes even the number of classes is
unknown. The classes are formed iteratively or hierarchically during the classifica-
tion process such that they create compact clusters in the feature space. Since the
unsupervised classification is rarely used in visual object recognition, we mention this
approach for the sake of completeness but do not go into details.

Constructing a classifier is equivalent to a partition of the feature space (see
Fig. 2.10). Each partition component is assigned to certain class (multiple partition
components can be assigned to the same class but not vice versa), and the unknown
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Figure 2.10: Partition of the feature space defines a classifier.

object f is classified according to the position of (I1(f), . . . , In(f))T . Hence, con-
structing a classifier means defining the boundaries of the partition. The partition
boundaries are set up by means of the training set. This stage is called training or
learning of the classifier, and it is the most difficult and challenging part of the clas-
sifier design and usage. The main challenge follows from the fact that the training
set is always of a limited size (sometimes of a very small one), but we try to set up
the classification rules, which should work well on a high number of unknown objects.
So, it is a kind of generalization or extrapolation from a small sample set, where the
result is always uncertain. As soon as the classifier has been trained, the rest (i.e.,
the recognition of unknown objects) is a routine task.

Theoretically, if all the assumptions were perfectly fulfilled, the training should
be very simple. Assuming that I1, . . . , In are invariant and discriminatory, then all
members of each class are mapped into a single point in the feature space irrespective
of the intra-class variations and the points representing different classes are distinct.
Then a one-element training set per class would be sufficient, and the classifier would
just check which training sample the incoming object coincides in the feature space.
This model is, however, very far from reality. The features Ik, although theoretically
invariant, may not provide a perfect invariance within the classes simply because the
intra-class variations are broader than they have been expected to be. Moreover, in all
stages of object recognition we encounter errors of various kinds, which all contribute
to the violation of the theoretical assumptions. In such a case, the training samples
of the same class may fall into distinct points in the feature space.

In the literature, the classifiers are sometimes formalized by means of decision
functions. Each class ωi is assigned to its real-valued decision function gi which
is defined in the feature space. Then an object f represented by a feature point
a = (I1(f), . . . , In(f))T is classified into class ωk if and only if gk(a) > gi(a) for all
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i 6= k. This concept is equivalent to the previous one. If the decision functions have
been given, then the partition boundaries can be found as solutions of the equations
gj(a) = gi(a). On the other hand, given the partition, we can easily construct the
decision functions as characteristic functions of the partition components.

There have been many approaches to the classifier training and to how the par-
tition is set up. In some classifiers, the partition boundaries are defined explicitly,
and their parameters are found via training; some others do not use any paramet-
ric curves/surfaces, and the partition is defined implicitly or by means of another
quantity. For the same training set, we can construct infinitely many classifiers (by
means of different training algorithms) which will most probably differ one another
by its performance on independent data. If we use an over-simplified model of the
partition, then we only roughly approximate the “ground-truth” partition, and the
number of misclassified objects is high even inside the training set. If, on the other
hand, we allow relatively complex boundaries and minimize the classification error on
the training set, we end up with an over-trained classifier, which is optimal on the
training set, but there is no guarantee of its optimality on independent data (more
precisely, it is highly probable that such classifier will perform poorly). One feels that
the “optimal” classifier should be somewhere in between (see Fig. 2.11).

(a) (b) (c)

Figure 2.11: Three different classifiers as the results of three training algorithms on
the same training set. (a) Over-simplified classifier, (b) over-trained classifier, and
(c) close-to-optimal classifier.

In the rest of the section we briefly review the basic classifier types. For details
and for other classifiers, we refer to the specialized monographs [70, 71].

2.3.1 Nearest-neighbor classifiers

The nearest-neighbor (NN) classifier, sometimes also called the minimum distance
classifier, is the most intuitive classifier. Vector a is assigned to the class which
minimizes the distance ̺(a, ωi) between a and respective classes. The feature metric
space with the metric d offers a variety of possibilities of how the distance ̺ between
a point and a set (class) can be defined. The one which is common in metric space
theory

̺1(a, ω) = min
b∈ω

d(a,b)

can of course be used, but it is very sensitive to outliers in the training set. To avoid
this sensitivity, the “mean distance”

̺2(a, ω) = d(a,mω),



2.3. CLASSIFIERS 23

where mω is the centroid of the class ω, is sometimes used instead. Using the mean
distance is also justified by a known paradigm from statistics, which says that no
algorithm working with real data should use extreme points or values, because they
tend to be unstable and most often influenced by measurement errors and noise. On
the other hand, ̺1 reflects the size and the shape of the classes in a better way than
̺2 (see Fig. 2.12).

(a) (b)

Figure 2.12: Decision boundary of the NN classifier depends on the used distance:
(a) the nearest distance ̺1 and (b) the mean distance ̺2.

If each class is represented by a single training sample, then of course ̺1 = ̺2.
In the case of two classes, this is the simplest situation ever, which leads to a linear
decision boundary. In the case of more classes, the feature space partition is given by
Voronoi tessellation, where each training sample is a seed point of a Voronoi cell that
corresponds to the respective class.

In case of multiple training samples in each class, there is of course a difference
between the NN classifiers which use ̺1 and ̺2 distances. While ̺2 again leads to a
Voronoi tessellation the seeds of which are the class centers, the use of ̺1 generates
complex curved decision boundaries.

The sensitivity of the NN classifier with ̺1 to outliers can be suppressed by in-
troducing a more general k-NN classifier, with k being a (usually small) integer user-
defined parameter (see Fig. 2.13). We can find two versions of this algorithm in the
literature.

Version 1

1. Unknown feature vector a is given.

2. Find k training samples which are the closest (in the sense of metric d) to sample
a.

3. Check for each class how many times it is represented among the k samples
found in Step 1.

4. Assign a to the class with the maximum frequency.
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Figure 2.13: Robustness of the k-NN classifier. The unknown sample ”+” is classified
as a circle by the NN classifier and as a cross by the 2-NN classifier. The later choice
better corresponds to our intuition.

Version 2

1. Unknown feature vector a is given.

2. Denote the number of the closest training samples from ωi as ki. Set ki = 0 for
i = 1, 2, . . . , C.

3. Until kj = k for some j do

Find training sample c which is the closest (in the sense of metric d) to sample
a.

If c ∈ ωi, then set ki = ki + 1.

Exclude c from the training set.

4. Assign a to the class ωj.

Version 1 is simpler because we need to find just k closest neighbors, but it may
not provide an unambiguous decision. Version 2 requires finding between k and
C(k − 1) + 1 closest neighbors (their exact number cannot be predicted) but mostly
yields a decision9. Although the meaning of k is slightly different in both versions,
its choice is always a heuristic often done on a trial and error basis. Small k provides
less robustness to outliers, but the classification is faster. The corresponding decision
boundary may be curved and complex, and the classifier tends to get overtrained. For
k = 1, we obtain a plain NN classifier. When k is higher, the decision boundary is

9The decision still may not be unique because there may exist multiple minima, but this ambiguity
is rare comparing to the ambiguity of Version 1.
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smooth and less distinct. More training samples may be classified incorrectly (which
says nothing about the overall quality of the classifier). Anyway, the upper limit on
k is that it should be by an order smaller than the number of the training samples
in each class. A typical choice of k in practice is from 2 to 10, depending on the size
and reliability of the training set.

The k-NN classifier is relatively time expensive, especially for high k. Several
efficient implementations can be found in the literature, and some are even available
on the internet.

2.3.2 Support vector machines

Classifiers called the Support vector machines (SVMs) are generalizations of a classical
notion of linear classifiers. The SVMs were invented by Vapnik [72]. In the training
stage, the SVM classifier looks for two parallel hyperplanes which separate the training
samples such that the distance (which is called margin) between these hyperplanes
is maximized. The decision boundary is then another hyperplane parallel with these
two and lying in the middle between them (see Fig. 2.14). The margin hyperplanes
always pass through some training samples; these samples are called support vectors.
The support vectors can lie on the convex hull of the training set only. The SVM
classifier satisfying this constraint is called the hard margin SVM.

(a) (b)

Figure 2.14: SVM classifiers. The hard margin (left) and the soft margin (right)
constraints.

Training of the SVM is a constrained optimization problem, where we minimize
the norm of the hyperplane normal vector subject to the condition that the margin
hyperplanes separate the data. This can be efficiently solved by quadratic program-
ming. The hard margin constraint is applicable only to linearly separable classes with
almost error-free samples. If there are some outliers in the training set, we can apply
the soft margin constraint proposed by Cortes [73]. Soft margin constraint allows
some training samples to lie inside the margin or even on its other side. It again leads
to a constrained optimization problem, but the objective function contains an addi-
tional penalty term. For the difference between the hard- and soft-margin classifiers,
see Figure 2.14.
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Boser et al. [74] generalized the idea of the maximum margin hyperplanes to
linearly non-separable classes. They proposed a mapping of the current feature space
into a new one, in which the classes are linearly separable. This mapping is defined
by means of various radial basis functions and is known as the kernel trick.

The SVMs have become very popular namely because their relatively fast training.
They provide a good trade-off between speed and accuracy, namely for mid-sized
training sets (although they can be applied to large training sets as well). However,
they also exhibit several potential drawbacks. The hard margin version ignores the
distribution of the samples inside the training set; it considers only the samples on
the convex hull. Unlike probabilistic classifiers, the SVM decision is deterministic
and does not take into account prior probability of individual classes. SVMs were
originally proposed for a two-class (dichotomic) problem. Generalization to more
classes is commonly done by decomposition into several dichotomies [75], which may
be time-expensive if C is large.

2.3.3 Neural network classifiers

Artificial neural networks (ANNs) are “biologically inspired” classifiers. The original
idea was to employ a massive parallelism offered by the most powerful computers and
to construct a “network” of many “neurons”, which can perform simple operations
in parallel. These neurons are organized into layers. The first (input) layer contains
as many neurons as is the dimensionality of the feature vector. It reads the object
features, makes a simple operation(s) with them, and sends these results to the second
layer. This process is repeated until the last (output) layer has been reached; the
output layer provides a decision about the class membership. The layers between the
input and output layers are called hidden layers. The neurons of the same layer do
not communicate among themselves, so they can actually work in parallel.

The ANNs were firstly used for classification purposes probably by Rosenblatt
[76], who proposed the first single-layer perceptron. It was, in fact, linear dichotomic
classifier. Each neuron was assigned a weight, and the perceptron calculated the linear
combination of the features (possibly with an offset) weighted by these weights. The
set where this linear combination was zero, defined a decision hyperplane. So, the
perceptron only checked the sign of the output and classified the object according to
this sign. The training of the perceptron consists of setting up the neuron weights
such that the training set (provided it is linearly separable) is classified correctly. The
training algorithm is iterative and upgrades the weights after the processing of each
training sample.

Later, the multilayer ANNs and especially the popular radial basis function (RBF),
networks broke the limitation to linearly separable tasks. The RBF networks have at
least one hidden layer, where the features are used as arguments of certain RBFs. So,
the evaluation of the RBF is used instead of doing linear combinations. The RBFs
are popular, smooth, and “infinitely flexible” functions known from approximation
theory (multidimensional thin-plate splines and Gaussian functions are examples of
the RBFs). When used in the ANN classifier, they can create an arbitrary smooth
decision boundary [77].

The popularity of the ANN’s in the 1970s and 1980s originated from two common
beliefs. The first one was that artificial intelligence algorithms should copy the “al-
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gorithms” in a human brain (even though the computer and brain architectures are
different) and the second one that the future of computers is in very powerful main-
frames equipped by thousands of CPUs. As we know today, the recent development
of computer technologies followed a different way to the distributed computing and
personal computers.

The ANN classifiers have been compared in many studies to the SVM with am-
biguous results. There is a belief these two types of classifiers are more or less com-
parable in performance (although they use different terminology and mathematical
background). We can find many parallels between them. The single-layer percep-
tron corresponds to the hard-margin linear SVM; the RBF networks use the same
“linearization” principle as the kernel trick in SVM (both even use the same func-
tions to create the decision boundary). The differences in performance reported in
individual experiments were caused probably by the properties of the particular data
rather than by general properties of these classifiers. In the 1980s, the ANN classifiers
were believed to overcome a construction of small sophisticated feature sets, which
is sometimes difficult. In many tasks, such as character recognition, the ANN was
trained directly on images, taking each pixel value as a feature. This was, however, a
dead-end road because these “features” did not provide any invariance to elementary
image transformations. All the above facts implied that neural network classifiers
were gradually overtaken in popularity and in the number of reported applications by
support vector machines in 1990–2005. After 2005, the new concept of deep learning
and convolution networks resurrected interest in the ANN’s.

Deep convolution neural networks (CNN) are modern classifiers which go beyond
the conventional framework of separated feature design and classifier training. Al-
though they were firstly proposed as early as 1980 [78], they have attracted noticeable
attention very recently when they repeatedly achieved an excellent performance in the
Large Scale Visual Recognition Challenge [79].

Instead of working with features “manufactured” beforehand, the CNN generates
the features by a cascade of convolutions and downsampling. The parameters of
each convolution kernel are learned by a backpropagation algorithm. There are many
convolution kernels in each layer, and each kernel is replicated over the entire image
with the same parameters. The function of the convolution operators is to extract
different features of the input. The capacity of a neural net varies, depending on the
number of layers. The first convolution layers obtain the low-level features, such as
edges, lines, and corners. The more layers the network has, the higher-level features
it produces. The CNN’s virtually skip the feature extraction step and require only
basic preprocessing, which makes them, if enough computing power is available, very
powerful [80].

The absence of sophisticated features defined in advance is not only an advantage
but also a drawback of the CNN’s. For CNN’s it is very difficult (if not impossible)
to generate features (by their inner layers), invariant to rotation or affine transfor-
mations (at least no such methods have been reported in the literature). In general,
it is possible to reach translation and scale invariance, but probably the only way
of dealing with other intraclass variabilities is a brute force approach or prior image
normalization.
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2.3.4 Bayesian classifier

The Bayesian classifier is a statistical classifier which considers the features to be
random variables. It is suitable when the training set is large. It makes a decision by
maximizing the posterior probability p(ωi|a) of assigning an unknown feature vector
a to class ωi. This is a reasonable idea because p(ωi|a) is the probability that an
object whose feature vector is a belongs to the class ωi. Maximizing the posterior
probability assures that the probability of misclassification is minimized [70]. This is
why the Bayesian classifier is sometimes called the “optimal” classifier.

Since the posterior probabilities cannot be estimated directly from the training
set, we take advantage of the Bayes formula, which express the posterior probability
in terms of prior probability and class-conditional probability

p(ωi|a) =
p(a|ωi) · p(ωi)

∑C
j=1

p(a|ωj) · p(ωj)
.

Since the denominator is constant over i, maximizing posterior probability is equiva-
lent to maximizing the numerator.

The prior probability p(ωi) express the relative frequency with which the class ωi

appears in reality. In other words, p(ωi) is a probability that the next object, which
we have not seen/measured yet, will be from the class ωi. The priors are unknown and
must be estimated during the classifier training. There are basically three approaches
how to estimate the priors. The best possibility is to use prior knowledge, which
might be available from previous studies. In medical diagnostics, for instance, we
know the incidence of certain diseases in the population. In character recognition,
the probabilities of the frequency of occurrence of each character is well known from
extensive linguistic studies (in English, for instance, the most probable letter is E
with p(E) = 0.13 while the least probable is Z with p(Z) = 0.0007 [81]).

If such information is not available, we may estimate p(ωi) by the relative fre-
quency of occurrence of ωi in the training set. This is, however, possible only if the
training set is large enough and has been selected in accordance with reality. If it is
not the case and no prior knowledge is available, we set p(ωi) = 1/C for any i.

The class-conditional probability p(a|ωi), sometimes referred to as the likelihood of
the class ωi, is a probability of occurrence of point a in ωi. It is given by the respective
probability density function (pdf), which is to be estimated from the training data
independently for each class. This estimation is usually a parametric one, where a
particular form of the pdf is assumed and we estimate only their parameters. Although
any parametric pdf can be employed, the Gaussian pdf is used most frequently. Hence,
we assume the n-dimensional pdf in the form

p(a|ωi) =
1

√

(2π)n|Σi|
exp

(

−
1

2
(a −mi)

TΣ−1

i (a−mi)

)

, (2.1)

where mean vector mi and covariance matrix Σi are estimated by a sample mean
and a sample covariance matrix from the training data10. In this way, the classifier
no longer works with the individual training samples, it works only with the pdf

10In some cases when the features are independent, we can assume all Σi being diagonal. Such
classifier is called the naive Bayesian classifier.
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parameters. In the case of equal priors, the classifier maximizes the likelihood. The
decision boundary in the feature space between two classes is given by the equation

p(a|ωi) = p(a|ωj),

which always leads to a hyperquadric (a conic if n = 2). If the covariance matrices
are equal, Σi = Σj , then the decision boundary between ωi and ωj is a hyperplane
(a line if n = 2), and vice versa (in this case, the joint covariance matrix Σ can be
robustly estimated from the training samples from both ωi and ωj simultaneously).
In such a case, the classifier can be understood as a minimum distance classifier which
minimizes the Mahalanobis distance

̺M (a, ωi) = (a −mi)
TΣ−1(a−mi).

If Σ is diagonal with equal variances, we end up with a standard Euclidean minimum
distance classifier.

If the classes are not normally distributed, their pdf’s can be estimated using other
parametric models or, alternatively, by non-parametric techniques (the estimation by
means of Parzen window uses to be applied, see [70] for details).

Since the Bayesian classifier requires a large number of training samples in each
class, it is not convenient for face and fingerprint recognition, where typically each
class is represented by a single (or very few) sample(s). On the other hand, it is
widely used and performs very well in the pixel-wise classification of multispectral
and hyperspectral data (see Fig. 2.15).

Figure 2.15: Multispectral satellite image. The objects are single pixels, the features
are their intensities in the individual spectral bands. This kind of data is ideal for
the Bayesian classifier.
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2.3.5 Decision trees

Decision trees are simple classifiers designed particularly for logical “yes/no” features
and for categorial features11, where no “natural” metric exists. The classifier is ar-
ranged into a (usually but not necessarily binary) tree, where the unknown object
enters the root and passes the tree until it reaches a leaf. In each node, a simple
question is asked, and the next move is chosen according to the answer. Each leaf is
associated with just one class, and the object is classified accordingly (several leaves
may be associated with the same class). Decision trees can be applied to real-valued
features as well. The queries have the form of simple inequalities (is the feature ai less
or greater than threshold t?) or compound inequalities, where a function of several
features is compared to the threshold.

In the training phase, we must design the tree shape, choose the queries in all nodes
and select the thresholds (and the compound functions) the real-valued features (if
any) are to be compared with. Obviously, our goal is to “grow” a small tree with
few nodes and simple decision queries. This is not a trivial task, and there have been
several approaches to tree training. The most popular one relies on the concept of
purity or impurity of the node. The node is called pure if it contains only the objects
belonging to one class (clearly, the only pure nodes are the leaves); the node with a
maximum impurity contains different classes with the same frequency.

The principle underlaying the tree creation is that we want to maximize the de-
crease of impurity between the node and the immediate descendent nodes. Hence,
a proper query at the node should split the data into the parts which are as pure
as possible. There have been several definitions of the impurity. Most of them are
inspired by information theory, such as entropy impurity, information impurity, and
Gini impurity, some others follow from our intuitive understanding of the problem
(variance impurity, misclassification impurity) [70]. The chosen impurity measure is
optimized in a “greedy” manner, which means a maximum drop is required in each
node. It is well known that this locally optimal approach may not lead to the simplest
tree but global tree optimization is not feasible due to its complexity.

2.3.6 Unsupervised classification

As we already mentioned, unsupervised classification (also called clustering) has in
object recognition less importance than the supervised one, because in most tasks
we do have a training set. Still, clustering may be applied in the preliminary stage
before the training set has been selected, for instance in multispectral pixel-wise
classification, to see how many potential classes there are.

Clustering is a traditional discipline of statistics and data analysis. Unlike the
supervised classification, the desired number of clusters may be unknown. Intuitively,
the cluster is a subset of the data, which is “compact” and “far from other clusters”
in the feature space. The meaning of these terms, of course, depends on the chosen
metric and may be defined in various ways.

Clustering methods can be divided into two major groups – iterative and hierar-
chical methods. Iterative methods typically require the number of the clusters as an

11Categorial features can take only few distinct values, for instance “good”, “average”, and “poor”.
They are not very common in image analysis but are of great importance in medical diagnostics and
social science statistics.
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input parameter. In each iteration, they try to re-assign the data points such that a
given quality criterion is maximized. A typical representative of iterative methods is
the famous C-means clustering.

Hierarchical methods built the cluster structure “from scratch”. Agglomerative
clustering starts from the initial stage, where each data point is considered to be a
cluster. On each level of the hierarchy, the two “most similar” clusters are merged
together. Various criteria can be used to select the clusters to be merged. The stop-
ping level and the final configuration are usually chosen by means of the dendrogram,
a symbolic tree graph showing the clustering process. A complementary approach
is provided by divisive algorithms, which on the initial level consider all data to be
contained in a single cluster. In each level, the algorithm selects the cluster to be split
and then divides this cluster into two parts, trying to optimize the same or similar
criteria as are used in agglomerative methods. Although agglomerative and divisive
methods may seem to converge to the same clustering, they are not completely “in-
verse” and may lead to different results. Agglomerative methods are usually faster
and more frequently used, particularly if the desired/expected number of clusters is
high. To learn more about clustering techniques, we refer to [71].

2.4 Performance of the classifiers

Before we proceed to the explanation of how we can increase the classifier performance,
let us mention how the classifier performance should be evaluated. After that, we
briefly review two popular techniques used for improving the classification – classifier
fusion and dimensionality reduction.

2.4.1 Measuring the classifier performance

Before we proceed to the explanation of how to increase the classifier performance,
let us mention how the classifier performance should be evaluated. Intuitively, one
may expect that the classifier performance could be measured by a single scalar indi-
cator called the success rate, which is a ratio of the number of successfully recognized
objects to all trials (it is often presented as a percentage). The success rate, however,
shows the quality of the classifier in a limited way, and sometimes it is even completely
misleading. Consider a medical prophylactical screening for a disease whose statis-
tical frequency in the population is 0.001. If any tested person was automatically
“classified” as a healthy person, then the classifier would reach an excellent success
rate 0.999 but such classifier is totally useless since it does not detect any disease
occurrence. Hence, the success rate can be used only if the relative frequency of all
classes is the same, but that is not the only limitation.

Let us again imagine a medical test for whether or not the test person has a
cancer. Since only suspected persons pass this test, the relative frequency of the
cancer occurrence can be considered 0.5. Still, the success rate itself does not say
anything about the quality of the test because the two possible misclassifications
have completely different weights. While the “false positive” results will be later
disproved by other tests (which may be expensive and unpleasant for the patient but
does not do any harm), the “false negative” result leads to a delay in the treatment
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and may be fatal for the patient. The success rate does not distinguish these two
cases.

The two above examples illustrate why the classifier performance should be re-
ported by a full confusion table, which is a C×C matrix with the ij-th element being
the number of the ωi members which have been assigned to ωj.

The confusion table provides a very good insight into the quality of the classifier
if it has been evaluated on a representative set of objects. It is seriously misleading to
use the training set for this purpose. The error estimates would be highly optimistic,
and if the confusion table was diagonal, we could not conclude that the classifier is
perfect, but it rather shows it is heavily overtrained. The correct way is to evaluate
the classifier on the test set, which should be selected in the same way as the training
set but has not been used for the training. If the user has not provided us with the
separate test set, we can just leave out 10% of the training set and use it for the
evaluation. By repeating this evaluation several times with randomly selected 10% of
the training samples and calculating the means and standard deviations, we obtain a
very reliable and informative confusion table.

2.4.2 Fusing classifiers

Fusing or combining the results of different classifiers together in order to reach bet-
ter performance is a modern trend in classifier design. This idea was proposed by
Kittler et al. [82], who presented several fusion schemes – algorithms, how to com-
bine the decisions of several classifiers together. By the term “different classifiers”
we understand either two classifiers of the same nature but being trained on different
training sets and/or in different feature spaces, or two classifiers of different nature
trained on the same or different data. For deterministic classifiers such as the k-NN
and SVM, there is not much freedom in constructing the fusion rule. The absolute
majority and the simple majority vote are probably the only reasonable choices. In
case of probabilistic classifiers, such as Bayesian classifier, the individual probabilities
of the assignments are fused instead of fusing final decisions. Then we maximize the
product, the sum, the median or the maximum of individual posterior probabilities.

The classifier fusion has been successfully used in handwritten character recog-
nition [83, 84], in medical diagnostics [85, 86], and in many other problems. It is,
however, true that classifier fusion does not always guarantee better accuracy than
the best-performing individual classifier. The best chance of improvement is if the
input classifiers have a comparable (and not very high) accuracy. The fusion rules
may be not only fixed but may be also adaptive w.r.t. the dataset, which improves
the performance particularly if more classifiers and hierarchical fusion schemes are
used [87]. For an exhaustive overview of classifier fusion techniques we refer to the
recent monograph [88].

2.4.3 Reduction of the feature space dimensionality

We should keep the dimensionality of the feature space as low as possible. The reason
for that is twofold – working in fewer dimensions is faster, and the classifier might
be even more accurate than in higher dimensions. While the former proposition is
evident, the latter one might be a bit surprising because one could intuitively expect



2.4. PERFORMANCE OF THE CLASSIFIERS 33

that the more features, the better classification results. To explain this paradox, let
us imagine we are using a Bayesian classifier with normally distributed classes. In n
dimensions, we have to estimate about n2/2 parameters in each class. If we double
the dimensionality, then the number of the unknown parameters increases four times
but the number of the training samples is still the same. Hence, increasing the
dimensionality yields less accurate parameter estimation. If we consider, in addition
to that, that the features are often correlated, the need for dimensionality reduction
is straightforward.

There are basically two goals (criteria) of the dimensionality reduction, which de-
termine the used approaches. The first goal is to remove the correlation (or other
dependencies) between the features globally, regardless of whether or not any classes
have been specified. The most famous algorithm of this kind is the principal compo-
nent transformation (PCT)12. The joint covariance matrix, estimated from all avail-
able data, is diagonalized. This is always possible because the covariance matrix is
symmetric; their eigenvectors are orthogonal and create a new coordinate system in
which the features are uncorrelated. The transformation from the old to the new
coordinates is a rotation. Then, the features are sorted according to their variance,
and p features called principal components with the highest variance are kept while
the others are removed from the system. Hence, the PCT creates new synthetic fea-
tures, which are linear combinations of the original ones and are not correlated (see
Fig. 2.16). It should be, however, noted that the PCT suppresses only the linear
component of the dependency between the features and cannot identify and handle
higher-order dependencies.

(a) (b)

Figure 2.16: Principal component transformation: (a) unstructured original data in
(X1, X2) feature space, correlated (b) transformation into new feature space (Y1, Y2),
decorrelated. The first principal component is Y1.

The PCT is an efficient tool suitable for many purposes, such as for multichannel
image compression, but its application to classification tasks is limited. As we have

12The term principal component analysis (PCA) has been equivalently used in the literature for
this technique.
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seen, the PCT evaluates the “quality” of the features solely according to their variance,
which may be different from their actual discrimination power (see Fig. 2.17).

(a) (b)

Figure 2.17: PCT of data consisting of two classes: (a) the original (X1, X2) feature
space, (b) new feature space (Y1, Y2) after the PCT. The first principal component is
Y1 thanks to higher variance but the between-class separability is provided solely by
Y2.

Another criterion is to select such features, which maximize the between-class sep-
arability on the training set. There are two conceptual differences from the PCT –
the new features are selected among the old ones (no features are artificially created)
and the labeled training set is required. The separability can be measured in vari-
ous ways. For normally distributed classes, the simplest separability measure is the
Mahalanobis distance between two classes

sM (ωi, ωj) = (mi −mj)
T (Σi + Σj)

−1(mi −mj).

More sophisticated (but not necessarily better) separability measures can be derived
from between-class ant within-class scatter matrices [89], trying to select the feature
subspace such that the classes are “compact” and “distant” from one another. In this
way, the feature selection problem has been reformulated as a maximization of the
chosen separability measure. To resolve it, several optimization algorithms have been
proposed, both optimal [90] as well as suboptimal [91, 92, 93] ones.

The advantage of the latter approach is that it considers the between-class sepa-
rability, preserves the original meaning of the features, and makes the choice on the
training set before the unknown objects are actually measured, so the features which
have not been selected can be excluded from the measurements.

Most recently, the wrappers feature selection methods have appeared [94]. They
do not maximize any separability measure but directly optimize the performance of
the classifier on a test set. Since this approach requires training and evaluating the
classifier repeatedly many times, it is significantly slower than the previous one, but
it may be better for the given classifier.
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2.5 Conclusion

This chapter presented a glance at the whole object recognition process. Our aim was
not to go into particular details but rather show briefly the context in which moment
invariants appear, their role in object description, and what we expect from them. In
the next chapters we study moments and moment invariants in detail.
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[69] J. Flusser, T. Suk, and B. Zitová, Moments and Moment Invariants in Pattern
Recognition. Chichester, U.K.: Wiley, 2009.

[70] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley Inter-
science, 2nd ed., 2001.

[71] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press,
4th ed., 2009.

[72] V. N. Vapnik, “Pattern recognition using generalized portrait method,” Automa-
tion and Remote Control, vol. 24, pp. 774–780, 1963.

[73] V. N. Vapnik and C. Cortes, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.



42 REFERENCES

[74] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory COLT’92, pp. 144–152, ACM Press, 1992.

[75] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass SVM method? An
empirical study,” in Multiple Classifier Systems MCS’05 (N. C. Oza, R. Polikar,
J. Kittler, and F. Roli, eds.), vol. 3541 of Lecture Notes in Computer Science,
(Berlin, Heidelberg, Germany), pp. 278–285, Springer, 2005.

[76] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408,
1958.

[77] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University
Press, 3rd ed., 1996.

[78] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[79] Stanford Vision Lab, “Imagenet large scale visual recognition challenge
(ILSVRC),” 2015. http://www.image-net.org/challenges/LSVRC/.
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chessboard norm, 3
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Fourier descriptor, 14
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Hamming norm, 4
hard margin SVM, 25
hidden layer, 26
hierarchical clustering, 31
histogram of oriented gradients, 19

image moment, 19
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entropy, 30
Gini, 30
information, 30

independent invariant, 7
information impurity, 30
intraclass variability, 5
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differential, 17
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metric, 2
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minimum distance classifier, 22
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moment invariant, 19
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nearest-neighbor classifier, 22
neural network
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norm, 2
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normed vector space, 2
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point set invariant, 19
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pseudometric space, 1
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quasimetric, 2
quasimetric space, 1
quotient set, 5

radial basis function, 26
radial shape vector, 11
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rectangularity, 10
relative invariant, 6

scale-invariant feature transformation, 18
semi-differential invariant, 17
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semimetric, 2
semimetric space, 1
seminorm, 3
set

quotient, 5
shape matrix, 12
shape vector

radial, 11
signature curve, 17
simple shape descriptor, 9
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feature, 1
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normed vector, 2
premetric, 1
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quasimetric, 1
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speeded-up robust features, 19
star-shaped object, 11
success rate, 31
supervised classification, 20
support vector machines, 25

test set, 32
texture, 15
training, 21
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intraclass, 5

vector
invariant, 7
radial shape, 11

vector space
normed, 2
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wavelet, 16
wavelet-based feature, 16
wrapper, 34


