
Generation of Moment Invariants by Tensor Method

with the Software “Afinvtensors”

Tomáš Suk

The Czech Academy of Sciences,

Institute of Information Theory and Automation.
Pod vodárenskou věž́ı 4, 182 08 Praha 8, Czech Republic

suk@utia.cas.cz

https://www.utia.cas.cz

February 13, 2020

1 Procedure

The software “Afinvtensors” is intended for generation of moment invariants both to
rotation and to affine transformation of 2D and 3D images, vector fields and tensor fields.
It uses the tensor method combined with the graph method for generation of individual
invariants.

The software is written in language C++ in the Microsoft Visual Studio Community
2017. The screenshot of the main dialog window is in Fig. 1.

Figure 1: Main dialog window.

1

1.1 Start

The root directory is called “afinvtensors”. The executable file “afinvtensors.exe” is then
in the subdirectory “\afinvtensors\x64\Release” or “\afinvtensors\x64\Debug”. The sub-
directories “\afinvtensors\Release” and “\afinvtensors\Debug” contain 32-bit versions.
After launching, this process makes a dialog window for starting other operations. The
standard order of operations is following:

1. Fill the parameters (transformation, dimensionality, tensor field ranks, and also
output directory).

2. Press the “Start new sequence” button.

3. Press the “Add edge” button repeatedly, until the time of computation is too long.

4. When the number of generated invariants is sufficient, press the “Eliminate re-
ducible” button.

5. Press the “Eliminate dependent” button.

6. Press the “Create Latex” button.

7. Press the “Draw graphs” button.

8. Translate the made file with the suffix “indep” and extension “tex” by some trans-
lator from Latex to dvi, postscript or pdf, e.g. Miktex.

The algorithm has exponential computing complexity (very approximately O(ne!),
where ne is the number of graph edges), therefore it is initially very fast, but the computing
time quickly increases with ne. Other limits are memory consumption (The error message:
“Cannot allocate memory for variable”) and precision.

As an illustration of the exponential computing complexity in practice, see Tab. 1.

Table 1: Statistics for rotation invariants of 2D images from the minimum moment order
0.

edges graphs invariants time
0 1 1 0.002 s
1 2 2 0.003 s
2 10 7 0.007 s
3 62 23 0.038 s
4 442 79 0.199 s
5 3458 274 1.214 s
6 28882 998 12.015 s
7 253138 3722 2 min 55.681 s
8 2301842 14399 59 min 53.889 s
9 21545762 57433 1 day 3 h 42 min 2.139 s

2

Now description of the individual parameters in more details follows.

1.2 Parameters

At the left part of the dialog window, there are basic parameters. The default values are
set to generate rotation invariants of 2D images from the second order. In all other cases,
the parameters must be set.

1.2.1 Transformation

The software produces invariants to linear transformations of coordinates

x′ = Ax, where x = (x1 · · ·xd)T . (1)

Selection “Rotation” means the matrix A is orthogonal with detA = 1 and the
transformation is just rotation. The selection “Affine” means there are no constraints on
the matrix A. The default is rotation.

1.2.2 Dimensionality

The number of dimensions of the original space. The possible choices are “2D” (then
d = 2) or “3D” (then d = 3). The default is 2D.

There are also choices “A:2D,B:3D” and “A:3D,B:2D”. It means that dimensions of
the original space and the space of tensor values differ, see the Sec. 1.2.3. In the case
“A:2D,B:3D”, the dimension of the original space d = 2 and the dimension of the tensor
values is 3. The matrix of the inner transformation A has the size 2 × 2 and the matrix
of the outer transformation B has the size 3 × 3. We can take a color image, what is
2D object, where we have three channels RGB in each point. The case “A:3D,B:2D” is
rather theoretical, it means 3D data with two channels.

The choices “A:2D,B:3D” and “A:3D,B:2D” bring some limitations on other parame-
ters. The inner (A) and outer (B) transformations cannot equal, when they have different
sizes, so the choice “A6=B (independent)” is automatic, the choice “A=B (total)” is not
possible. When the matrix B should have some prescribed size, it must exist, i.e. we
must choose some original rank greater than zero, otherwise the error message “If the
dimensions of the inner and outer transformations are different, the contravariant rank or
the covariant rank must be greater than zero.” is used. E.g. in the case of color images,
we choose the contravariant rank ri = 1.

1.2.3 Inner (A) and outer (B) transformations

The inner transformation deals with the coordinates, the outer transformation works with
the tensor values. If we have a tensor field in the narrow sense, then inner transforma-
tion equals the outer one and we talk about total transformation. Therefore the option
A=B is default. If sometimes we need invariants for the case of different transformations
(we talk about independent transformations), we can select A6=B. Then the graphs with
inadmissible bi-color edges are not evaluated and only the invariants to the independent
transformation are generated. If we work with images (input rank is zero), this option
has no meaning.

3

1.2.4 Lower ranks

When we generate partial invariants with some output ranks greater than 0, then the
algorithm for elimination of reducible invariants needs also all lower output ranks. So, the
default option is “included”. When we choose “not included”, only partial invariants with
the defined output ranks are generated, but then we must omit “Eliminate Reducible”
and use directly “Eliminate dependent” with option “from all”. When both output ranks
are zero, this option has no influence.

1.2.5 Contravariant rank

The original contravariant rank ri of the tensor field.

1.2.6 Covariant rank

The original covariant rank oi of the tensor field. If both ri = 0 and oi = 0 (default),
we generate invariants of images. If ri = 1 and oi = 0, we generate invariants of vector
fields. If ri = 0 and oi = 1, it would be the purely theoretical case, when the inner
transformation is inverse of the outer transformation. If ri + oi ≥ 2, we obtain invariants
of tensor fields.

1.2.7 Contravariant rank of result

The number ro of contravariant indices that do not come under the contraction. Therefore
ro ≤ ri must be valid.

1.2.8 Covariant rank of result

The number oo of covariant indices that do not come under the contraction. Therefore oo ≤
oi must be valid. When ro+oo = 1, the results are partial invariants in the form of vectors
that are multiplied once by the transformation matrix during the transformation. They
are suitable for normalization, because we can compute the normalizing transformation
from the values of two partial invariants (three in 3D).

1.2.9 The number of edges

The current number ne of edges of the generated graphs. The operation “Add edge”
increases ne by one automatically. It must be set manually, when some return to previous
results is asked. In the case of affine invariants of images, ne (usually) equals the order of
the generated invariants. In the case of rotation, it equals the order of the complete set
of the invariants, the maximum order is double ne. In the case of the tensor fields, some
edges are consumed to the tensor field indices and the order is ne − ri − oi.

1.2.10 The minimum moment order

The zeroth-order moments are usually used for the normalization to scaling and the
first-order moments for normalization to translation, therefore the default value is 2.
Sometimes, e.g. when we are about to derive the normalization to scaling and translation,
we need also the zeroth- and first-order invariants. Then it is suitable to set this parameter
to zero.

4

1.2.11 Homogeneous and simultaneous invariants

The homogeneous invariants are only composed from the moments of the same order,
while the simultaneous invariants contain the moments of more than one order. The
default option “also simultaneous” leads to preference of usually simpler simultaneous
invariants. The option “prefer homogeneous” leads to the same result of the operations
“Start new sequence” and “Add edges”, but during operations “Eliminate reducible” and
“Eliminate dependent”, the simultaneous invariants are removed first. The option “only
homogeneous” leads to removing all simultaneous invariants immediately in the operations
“Start new sequence” and “Add edges”.

1.2.12 Symmetric tensor fields

Some tensor fields in physics, e.g. stress tensor, are symmetric, i.e.

Ti1i2(x1 · · ·xd) = Ti2i1(x1 · · ·xd). (2)

The indices i1 and i2 can be both contravariant and covariant. Then the moments are
also symmetric

m(i1i2)
p1...pd

= m(i2i1)
p1...pd

(3)

and we can simplify the invariants. From the two moments in (3) only m
(i1i2)
p1...pd with

i1 ≥ i2 is used, the other moment is substituted by the first one.
It works well for the tensor fields of the common rank (contravariant plus covariant)

equaling two. Checking of this box has no meaning for images and vector fields. When
the common rank is greater than two, we must use the two edit boxes below the check
box for definition, what index is symmetric with what index.

1.2.13 Template of output names

Fill only the directory with the output files here. It is possible to use the button “Browse
directory”. The names of the output files are composed automatically from the following
abbreviations:

• “af” affine transformation,

• “rot” rotation,

• “3D” three-dimensional (two-dimensional is default without an abbreviation),

• “2D3D” inner three-dimensional and outer two-dimensional transformations,

• “3D2D” inner two-dimensional and outer three-dimensional transformations,

• “adifb” = “A differ from B”, the inner transformation can differ from the outer one,

• “ts” = “total skew”, the inner and outer transformations must equal,

• “img” = “images”, the numbers of both contravariant and covariant indices ri and
oi equal zero.

• “vect” = “vector fields”, ri + oi = 1,

5

• when ri + oi ≥ 2, the notation “ri oitens” is used,

• “norm” means ro = 1 and oo = 0, else the notation “ro oonorm” is used,

• “inv” = “invariant” means ro + oo = 0 and full invariants are generated,

• “hmg”, only homogeneous invariants are generated,

• “enc”, eliminate non-complete sets,

• “sym”, symmetric tensor fields,

• “zo” = “also zero and one”, the minimum moment order equals zero,

• “o” = “also one”, the minimum moment order equals one,

• when the minimum moment order mo is greater than 2, the notation “frommo” is
used,

• “lr” = “lower ranks”, the partial invariants with lower output ranks than ro and oo
are also generated,

• the number of edges,

• “g”, the file with graphs,

• “irred”, the file with irreducible invariants only,

• “indep”, the file with independent invariants only,

• “deriv”, the file with derivatives of the invariants,

• “labels”, the file with node labels of the independent invariants,

• “ statistics” the file with statistics of the computations.

• “ momval” the file with prescribed moment values for the dependence test.

The parameter “File name prefix” is inserted before the file name and the parameter
“File name suffix” is inserted behind the file name (more precisely between “lr” and the
number of edges), so, it is possible to distinguish a few sequences of the invariants with
the same parameters.

The Latex command ’\graphicspath’ cannot work with non-standard characters (that
with ASCII code higher than 127). If you work with Postscript graphs in the Latex files,
avoid such characters in the prefix and suffix, please.

The operation “Start new sequence” make new directory with the name composed
from the abbreviations from “af” to “lr”, i.e. without the number of edges. The new
sequence of files with the increasing number of edges is saved into this new directory.

1.3 Operations

Here, we add some other comments to individual operations.

6

1.3.1 Start new sequence

It generates the graphs of the given parameters and the invariants from them. Before it,
the old files with invariants, with graphs and with statistics are deleted, if they exist. It
does not increase the number of edges in the graphs.

1.3.2 Add edge

It generates the graphs of the given parameters and the invariants from them. Before it,
it increases the number of edges in the graphs by one. It opens the files for append and
inserts the results to the files from less numbers of edges.

Similarly as “Start new sequence”, the invariant generation according to an individual
graph can lead to four possible results: the graph does not pass through the test of
admissibility, the result is zero, the result is the same as some previous invariant or a
new invariant is generated. The statistics does not count the graphs that have not passed
through the test of admissibility, but it is possible to calculate them as the number of
graphs minus zeros, identical and written.

There is an option “Make moment values” with the default state unchecked. When
this check box is checked, a special file with the suffix “ momval” is created. It contains
a matrix of moment values filled by the letters ’r’ for each channel of the tensor field. In
3D, it is a few matrices. When the letter ’r’ is substituted by some number, the number
is used as static moment value during the dependence test. It works also during “Start
new sequence”.

1.3.3 Eliminate reducible

It removes the products and the linearly dependent invariants from the file. It has one
option: non-complete sets “preserve” (default) or “eliminate”. When “eliminate non-
complete sets” is chosen, the numbers of the invariants of the individual orders are counted
and compared with the theoretical number. When the actual number is less than the
theoretical one, it is sure the set of this order is not complete and the invariants are
eliminated directly before the multiplication test, what can save some time. The option
“preserve non-complete sets” means all the input invariants are tested and when pass,
they are included to the result.

1.3.4 Eliminate dependent

It removes (also) the polynomially dependent invariants from the file. It has one option:
the default “from irreducible”, it means the input is the file with the irreducible invariants
(the result of the operation “Eliminate reducible”). When the option “from all” is chosen,
the input is the file from “Start new sequence” or “Add edge” is used. The operation has
additional options.

When the “Make moment values” check box is checked and the special file with the
suffix “ momval” is found, the static numbers in this file are used as the moment values
during the dependence test.

7

1.3.5 Create Latex

It transcripts the chosen txt file to Latex. The options are “with all” for transcription
from the result of “Start new sequence” or “Add edge” operations. The option “with
irreducible” means transcription from “Eliminate reducible”, and the option “with inde-
pendent” means transcription from “Eliminate dependent”.

Implicitly, the file contains the references to images with the graphs. The graphs
can be made by “Draw graphs” operation or the references can be removed, typically
by operation “substitute ’\includegraphics’ by ’%\includegraphics’ ” in some text editor.
The operation has additional options.

1.3.6 Draw graphs

It makes a special subdirectory with the graphs in Postscript format for the tex files. The
operation has additional options.

1.3.7 Additional options

It creates a new dialog window making accessible some additional options for operations
“Eliminate dependent”, “Create Latex”, and “Draw graphs”. It is these parameters:

• “Eliminate dependent”

– “Number of tests” – the number of sets of random values of moments for the
test of independence (default 5)

– “Tolerance SVD” – tolerance of zero values in singular value decomposition.
The default 0 means it is computed according to the formula ǫd ·max(nv ·np, nt)·
v, where ǫd = 2.2204460492503131 · 10−16 is the smallest number, whose sum
with 1 is greater than 1 in double precision floating point arithmetics, nv is the
number of tested invariants, np is the number of parts of the partial invariants,
nt is the number of different moments occuring in the tested invariants and v
is the maximum singular value in the tested matrix. The specific value is writ-
ten in the statistic file. If the test “Eliminate dependent” returns repeatedly
different rank of the tested matrix, it is useful to increase this value.

– “Tolerance RREF” – tolerance of zero pivots in reduced row echelon form. The
default 0 means it is computed according to the formula ǫd ·max(nv ·np, nt) ·w,
where w is the maximum absolute value in the tested matrix. The specific
value is written in the statistic file. If the test “Eliminate dependent” returns
repeatedly different list of independent invariants, it is useful to increase this
value typically to the square root of the value from the statistic file.

– “Derivatives on disk” – “none” (default), the derivatives of the invariants are
neither written to disk nor read from disk, “write”, the derivatives are newly
computed and written to disk, “read”, the derivatives are read from disk.

• “Create Latex”

– “Characters in line” – the number of characters in one row of the Latex file (de-
fault 83). The average subscript size is used, average standard size is calculated
as 1.5× greater.

8

– “Lines in page” – the number of rows in one page of the Latex file (default 38).

• “Draw graphs”

– “Include border” – if checked (default), the bounding box of the graph image
is set “Horizontal size” × “Vertical size”, if not, the tight bounding box is
computed. It saves space in a paper, but the graphs have various size, otherwise
you must set the figure size in the ’\includegraphics’ command manually.

– “Describe nodes” – if checked, the nodes are labeled by numbers from 1, if not
(default), no description is used.

– “Horizontal size” – the horizontal size of the graph image in pt (default 256
pt). One typographic point (pt) equals 0.3527̄ = 127/360 mm.

– “Vertical size” – the vertical size of the graph image in pt (default 256 pt).

– “Radius of a node” – the radius of the disk representing the node in pt (default
5 pt).

– “Distance of edges” – the distance between adjacent multiple edges in pt (de-
fault 8 pt).

– “Edge thickness” – the thickness of the edges in pt (default 1 pt).

– “Color of edges” – the red, green and blue components of the colors of in-
dividual edge types. The default is black coordinate edges (0,0,0), magenta
contravariant edges (255,0,255), and green covariant edges (0,255,0).

The screenshot of the dialog window with the additional options is in Fig. 2.

Figure 2: Dialog window with additional parameters.

1.3.8 Close

It closes the dialog window. Be careful not to use it before the last operation finishes.

2 Formats of the Generated Files

The files intended for the translation by Latex have the extension “.tex”, the graphs have
the extension “.eps”, and other files have extension “.txt”.

9

2.1 Files with Invariants

The file contains a few (sometimes a lot of) invariants separated by an empty row. The
first row of each invariant consists of three numbers ne nc nr, where ne is the number of
edges of the generating graph, nc is the number of terms and nr is the number of moments
in one term. There is one exception. If the graph is

A1
A0,

it is just a node without any edge, but ne = 1 in this case. So, ne is rather the number
of columns necessary for storage of the graph to the memory.

Then, nc rows with individual terms follow. The first number in the row is a coefficient
and the rest of the row contains the indices of the moments in order: coordinate indices,
contravariant indices and covariant indices. The entire number of indices ni of one moment
can be calculated from the number of integers in one row nn as ni = (nn − 1)/nr. The
precise numbers of specific types of indices can be found from the file name. E.g. the file
“rot3D2 0tenstsinvzo4indep.txt” contains ci = 3 coordinate indices at each moment (“3D”
in the file name), ri = 2 contravariant indices and oi = 0 covariant indices (“2 0tens” in
the file name). If there is an invariant

2 9 1
1 2 0 0 0 0
1 0 2 0 0 0
1 0 0 2 0 0
1 2 0 0 1 1
1 0 2 0 1 1
1 0 0 2 1 1
1 2 0 0 2 2
1 0 2 0 2 2
1 0 0 2 2 2

that means the invariant

m
(00)
200 +m

(00)
020 +m

(00)
002 +m

(11)
200 +m

(11)
020 +m

(11)
002 +m

(22)
200 +m

(22)
020 +m

(22)
002

has 2 columns of the generating graph, 9 terms and one moment in each term. The
contravariant and covariant indices are written in parenthesis here to distinguish them
from the coordinate indices.

The files with the partial invariants differ, the first row of each invariant includes eight
numbers ne nc nr ci ri oi ro oo, where ci, ri, and oi are the same in the entire file, ro or oo
can differ. The invariant

2 4 1 2 1 0 1 0
1 1 1 0
-1 2 0 1
1 0 2 0
-1 1 1 1

is then a partial invariant with ro = 1

P (1) = m
(0)
11 −m

(1)
20

P (2) = m
(0)
02 −m

(1)
11

10

and with the one-based output index.
The files with derivatives have two particularities. The first row consists of seven

numbers defining the size of the file nv nt ci ri oi ro oo, where nv is the number of derived
invariants and nt is the number of moments in the denominators of the derivatives, so,
the file contains nv × nt derivatives. It includes also zero derivatives in the form of three
zeros in one row.

2.2 Files with Graphs

We use the following notation for description of the graphs. The nodes are numbered
from 1 to nd, each edge is written in one column. In them, 0 is imaginary node that does
not correspond to any moment tensor, ’V’ (’Vector Value’) means the part of the edge is
plotted as magenta (it is contravariant index), ’T’ (’The oTher index’, i.e. covariant) is
plotted green and ’A’ means the edge part is not plotted ’At All’. So, A0 means that the
edge does not connect any second or third node. E.g. the graph from Fig. 3 is described
as

1 1 T1
V1 V2 T2
V3 3 T3

and the example from Fig. 4 is described as

T1 T2 3 V3 T4 V4 1
V2 T3 4 4 4 V1 A0.

2.3 Files with prescribed moment values

The name of the file includes the suffix “ momval”. The first row is e.g. “dimensions=3,
contravariant=2, covariant=2, maxorder=4”, where the numbers are the parameters of
the invariants, namely 2D or 3D, the number of contravariant and covariant indices and
the maximum moment order. The rows in the form e.g. “i0=1 i1=0 j0=1 j1=2” are here
just for orientation. The ’i’ are contravariant indices, the ’j’ are covariant. In ’ik=v’,
the ’k’ means kth contravariant index and ’v’ is its value; 0 means x-component, 1 y-
component and 2 z-component. The matrices in form

r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r

follows. The ’r’ means random. The arrangement in 2D is

m00 m10 · · · md0

m01 m11 · · · md1
...

m0d m1d · · · mdd,

where d is the maximum index value (maxorder). In 3D, it is

11

m000 m100 · · · md00

m010 m110 · · · md10
...

m0d0 m1d0 · · · mdd0

m001 m101 · · · md01

m011 m111 · · · md11
...

m0d1 m1d1 · · · mdd1

...

m00d m10d · · · md0d

m01d m11d · · · md1d
...

m0dd m1dd · · · mddd.

The matrices for different value of the z-component are separated by an empty row.
It is possible to substitute the letter ’r’ by some prescribed value at the specific position,
e.g.

0 0 1 r r r
0 0 r r r r
0 r r r r r
r r r r r r
r r r r r r
r r r r r r

The value 1 will be used as m20 and the zeros as other moments up to the second
order in the dependence test. The values of the higher-order moments stay random.

3 Theory

An introduction to tensors can be found in [1] or in [2]. A good explanation can also be
found in the English translation [3] of the Russian original [4].

3.1 Tensors

Intuitively speaking, a tensor is an array of numbers and the rank of a tensor determines
the dimensionality of this array. Special cases include scalars, which are tensors of rank
zero, vectors, which are tensors of rank one, and matrices, which are tensors of rank two.
Unlike usual arrays, the tensors have two types of indices, contravariant and covariant.
They differ in behavior under affine transformation.

Definition 1 A multidimensional array Ti1...in
j1...jm

that behaves under an affine transforma-

tion by the invertible matrix Ai
j ∈ R

d×d like

T′i1...in
j1...jm

= | det(A−1)|wAi1
k1
· · ·Ain

kn
(A−1)l1j1 · · · (A

−1)lmjmT
k1...kn
l1...lm

(4)

12

is called a (relative, axial) tensor of covariant rank m, contravariant rank n, and weight
w. An (absolute) tensor has weight zero.

The basic operations acting on tensors, are addition, multiplication, and contraction.
Only addition of tensors with the same rank and weight is possible.

Definition 2 Let T and T′ be two relative tensors of covariant rank m, contravariant
rank n. Then, the sum T+T′ is defined

(T+T′)i1...inj1...jm
:= Ti1...in

j1...jm
+T′i1...in

j1...jm
. (5)

The sum is a relative tensor of the same covariant rank m, contravariant rank n, and
weight w as the terms. The multiplication can be performed with tensors of different rank
and weight

Definition 3 Let T and T′ be two relative tensors of covariant rank m, contravariant
rank n, and weight w and m′, n′, w′ respectively. Then, the product T ⊗ T′ (also called
outer product or tensor product)

(T⊗T′)
i1...ini

′

1
...i′

n′

j1...jmj′
1
...j′

m′

:= Ti1...in
j1...jm

T′
i′
1
...i′

n′

j′
1
...j′

m′

(6)

is a relative tensor of covariant rank m+m′, contravariant rank n+n′, and weight w+w′.

In other words, we multiply each component of the first tensor by each component of
the second tensor.

The contraction is a sum over one index used twice, once as contravariant index, once
as covariant index. The good example of the contraction is vector dot product, where
both indices are used for the contraction, or matrix multiplication, where two from four
indices are contracted. The result has two remaining indices. Formally

Definition 4 Let T be a relative tensor of covariant rank m, contravariant rank n, and
weight w. Then, the contraction

∑

(ik ,jl)
T of a covariant index ik and a contravariant

index jl
(

∑

(ik=jl=λ)

T)
i1...ik−1ik+1...in
j1...jl−1jl+1...jm

:= T
i1...ik−1λik+1...in
j1...jl−1λjl+1...jm (7)

is a relative tensor of covariant rank m− 1, contravariant rank n− 1, and weight w.

The total contraction is performed over all indices. The contraction over one index
causes direct and an inverse matrix of the affine transformation in Def. 1 are multiplied
and canceled. The total contraction cancels all the matrices and we obtain a relative
affine invariant that is multiplied by certain power of determinant of the transformation.
Therefore, the total contraction can be used for the construction of affine invariants.

If we leave one index without contraction, we obtain a vector that behaves linearly
under the linear transformation of coordinates. It can be used for normalization of tensor
fields.

Besides tensors, we can have also tensor fields. It means we have defined the tensor
in each point of a space.

13

Definition 5 When a tensor is defined in each point of d-dimensional space and it behaves
under an affine transformation like

T′i1...in
j1...jm

((x′)1 · · · (x′)d) =| det(A−1)|wA| det(B−1)|wBAi1
k1
· · ·Ain

kn

(A−1)l1j1 · · · (A
−1)lmjmT

k1...kn
l1...lm

(x1 · · ·xd)

where ((x′)1 · · · (x′)d)T =B−1(x1 · · ·xd)T
(8)

is called a (relative, axial) tensor field of covariant rank m, contravariant rank n, and
weight wA + wB. The affine transformation with the matrix A is called outer and the
affine transformation with the matrix B is called inner.

The tensor field in strict sense has ever A = B. We can imagine the case A 6= B as
a color image, where one affine transformation deals with the space coordinates and the
other affine transformation deals with the colors. Our software can work even with this
special case.

3.2 Rotation

The linear transformation of coordinates can be described as

((x′)1 · · · (x′)d)T = A(x1 · · ·xd)T . (9)

If there are no constraints on the matrix A of the size d×d, it is called affine transfor-
mation. If the matrix A = {aij} is orthogonal, i.e.

∑d

i=1 aijaik = 0 and
∑d

i=1 ajiaki = 0
for j 6= k, then the transformation is called orthogonal. If in addition det(A) = 1, then
it is rotation, at least in 2D and 3D. Our software does not work with spaces of higher
dimensions.

The inverse of orthogonal matrix equals its transposition, i.e. A−1 = AT . It implies
that then we need not distinguish contravariant and covariant indices. We can perform
contraction over arbitrary two indices.

3.3 Moment Tensors

Geometric moments of real valued functions have been introduced to pattern recognition
in [5]. The geometric moment of an image is defined as follows.

Definition 6 For a scalar function f : Rd → R with compact support, the geometric

moment mp1...pd of order o =
∑d

i=1 pi is

mp1...pd =

∫

Rd

(x1)p1 · · · (xd)pdf(x) ddx, (10)

where (xi)pi refers to the pi-th power of ith coordinate.

Dirilten and Newman suggest the use of moment tensors for the construction of mo-
ment invariants with respect to orthogonal transformations in [6]. They construct the
moment tensors by arranging the moments of each order in a way such that they obey
the tensor transformation property (4). The method is also well described in [7].

14

Definition 7 For a scalar function f : R
d → R with compact support, the moment

tensor oM of order o ∈ N takes the form

oMk1...ko =

∫

Rd

xk1 · · ·xkof(x) ddx, (11)

with kl ∈ {1, . . . , d}, l ∈ {1, . . . , o} and xkl representing the kl-th component of x ∈ R
d.

The component oMk1...ko of a moment tensor equals the geometric moment
mp1...pd iff the number of indices k1, . . . , ko equal i is pi for i ∈ {1, . . . , d}.

Langbein and Hagen [8] have generalized the definition of the moment tensor to tensor
valued functions.

Definition 8 For a tensor field T : Rd → R
dn×dm with compact support, the moment

tensor oM of order o ∈ N takes the form

oMk1...koi1...in
j1...jm

=

∫

Rd

xk1 · · ·xkoTi1...in
j1...jm

(x1 · · ·xd) ddx. (12)

Similarly to the scalar case, the component oMk1...koi1...in
j1...jm

of a moment tensor equals
the geometric moment

m
(i1...in)
p1...pd(j1...jm)

of the component Ti1...in
j1...jm

of the tensor field iff pl of the indices k1, . . . , ko equals l for
all l = 1, . . . , d. The moment tensor of order o of a tensor field of covariant rank m,
contravariant rank n and weight w is a tensor of covariant rank m, contravariant rank
n+ o and weight w − 1, as shown by Bujack and Hagen in [9].

The moment tensor oMk1...koi1...in
j1...jm

has o coordinate indices, n contravariant indices,
and m covariant indices, i.e. o + n upper and m lower indices. The upper left index o is
written to distinguish the coordinate indices and the contravariant indices of the original
tensor field.

It is often not possible to perform the total contraction directly because of the different
number of covariant and contravariant indices of the tensor fields. Dirilten and Newman
suggested already in [6] contractions with the permutation tensor ε.

Definition 9 The component with indices 1 . . . d of the permutation tensor equals
one and also each component with an even permutation of the indices equal one. The
components with the odd permutation of indices 1 . . . d equal -1. If some index is repeated,
then the sequence of the indices is not any permutation of 1 . . . d and the corresponding
component of the permutation tensor equals zero.

In the even permutation, we must swap an even number of indices to convert the
current ordering of indices to 1 . . . d or back; in the odd permutation, it is the odd number
of swaps. In 2D, the permutation tensor εij takes the form

ε =

(

0 1
−1 0

)

(13)

In 3D, 132, 213 and 321 are odd permutations of 123, while 231 and 312 are even
permutations. So, these 6 components equal 1 or -1, other 21 components equal 0.

15

The permutation tensor can be used as covariant ε1...d, then it has contravariant rank
zero, covariant rank d and weight −1. Then, we can perform it for contraction of the
contravariant indices of the moment tensors. The permutation tensor can also be used as
the contravariant εi1...id with contravariant rank d and covariant rank zero. It can be used
for contraction of the covariant indices.

We can use the permutation tensors for the total contraction of a tensor product of
moment tensors of a tensor field with both contravariant and covariant ranks equaling
one

I = 2Mijk
ℓ

1Mmn
o

0Mp
qεiknεjmpε

ℓoq. (14)

According to Einstein’s notation, the sum symbols over all indices from 1 to d are
omitted.

3.4 Graph Method

In the following, we use graph theory to generate all possible contractions of the given
moment tensor products. Every product contraction can be expressed by a graph, where
each moment tensor corresponds to a node and each index corresponds to a connection
edge–node. We use edges of several types. The basic type is direct contraction over an
index used twice at two moment tensors. When the index is used once at a permutation
tensor, we should use auxiliary node for the permutation tensor. These nodes are omitted
and we use one edge for the whole permutation tensor, e.g. the contraction 1Mi 1Mjεij is
expressed by one edge. In 3D, it means we have triple hyperedges connecting three nodes.

The type of the edge is distinguished by color of the edge, we use black color for
coordinate indices, magenta for contravariant indices and green for covariant indices. So,
if we perform contraction over one coordinate and one covariant index, the edge color is
changed in the middle of the edge. If there are some non-contracted indices, they can be
expressed by special “half-edges” leading to nowhere.

An example of a graph corresponding to the contraction (14) is in Fig. 3.

M

M

M

ijk
l

2

mn
o

1

p
q

0

ikn

jmp

loq

ε

ε

ε

Figure 3: Graph example generating a partial invariant with the zero-rank contraction
2Mijk

ℓ
1Mmn

o
0Mp

qεiknεjmpε
ℓoq of a vector field.

16

Another example can be contraction

P r = 3Mijkℓ
i

1Mmn
o

0Mq
p

1Mrs
q εjnεkmε

opεℓs (15)

with graph in Fig. 4.

M

M M

Mrs
q

1

q
p

0 mn
o

1

ijkl
i

3

jn

op

km

ls

i

q

r

ε

ε

ε

ε

Figure 4: Graph example generating a partial invariant with the first-rank contraction
3Mijkℓ

i
1Mmn

o
0Mq

p
1Mrs

q εjnεkmε
opεℓs of a tensor field with one covariant index and one

contravariant index.

3.4.1 Generation of the Graphs

The graphs are described by a list of edges. The main parameter is the number of edges
ne, it is given by a user, the number of nodes nd is computed from the graph. The graph
generation starts with the first graph

1 1 · · · 1 1
1 1 · · · 1 1.

Then, the edges are colored, the graph is evaluated and the next graph is generated.
If the last graph is reached, the algorithm finishes. The coloring is based on the similar
principle. If there is another possibility of the coloring, it is evaluated, otherwise next
form of the edges is generated. The last graph is

1 3 · · · 2ne − 3 2ne − 1
2 4 · · · 2ne − 2 2ne.

In some cases, there are modifications. If we generate 3D affine invariants, triple
hyperedges are generated from

1 1 · · · 1 1
1 1 · · · 1 1
1 1 · · · 1 1

to

1 4 · · · 2ne − 5 2ne − 2
2 5 · · · 2ne − 4 2ne − 1
3 6 · · · 2ne − 3 2ne

for the rotations and to

17

1 2 · · · ne − 1 ne

2 3 · · · ne ne + 1
3 4 · · · ne + 1 ne + 2

for the affine transformation.
If partial invariants with ri contravariant indices and oo covariant indices are generated,

then we need ri + oo half-edges. They are created so the last ri + oo edges is filled by 1 in
the first row and zeros in other rows in the first graph.

The generation of the next graph is divided to two parts. First, the next half-edge is
tried to generate. Only if it not possible, next standard edges and triple hyperedges are
generated by the Algorithm 1.

Algorithm 1 Generation of the next graph from the current one.

1: Row S ← last row
2: while Row ≥ first row & no new graph found do
3: Search Row of the edge list from behind.
4: if Can we increase any node label? then
5: Increase it to v1.
6: if Row 6= the first row then
7: Fill the rest of Row with max(v1,ai).
8: ai is the node label above it (in Row-1).
9: else
10: Fill the rest of Row with v1.
11: end if
12: Fill the node labels below and rest of these rows with v1.
13: end if
14: Decrease Row by one to the beginning.
15: end while
16: if Was any node label increased? then
17: Return the new graph.
18: else
19: Stop.
20: end if

The algorithm is illustrated in Fig. 5. On the position v1, there was value v1−1. It was
the first value from the end that can be increased to v1. The new value vn is maximum
from the values v1 and ai. The value v1 fills also the right bottom corner of the graph.

· · · · · · ai · · ·
· · · v1 − 1 · · · vi · · ·

· · ·
→

· · · · · · ai · · ·
· · · v1 · · · vn · · ·
· · · v1 · · · v1

Figure 5: Filling the rest of the graph after increasing a node label. The new value
vn = max{v1, ai} does not depend on the previous value vi.

The algorithm for the half-edges is a loop that insert the half-edges successively to
all nodes. Similarly we move the colors of the edges going from the individual nodes, so
each node would have ri magenta edges and ro green edges. The remaining o black edges
define the moment order.

18

3.5 Removing of Reducible Invariants

The graph method produces many dependent invariants that should be removed. We can
distinguish a few types of dependencies. Some invariants are zero, there are pairs of the
same invariants, some invariants are products of the others, some are linear combinations
and there are also polynomial dependencies among the invariants. There is a standard
procedure for elimination of linearly dependent invariants, see e.g. [10]. Recently, Lang-
bein and Hagen [8] published a numerical test for elimination of dependent invariants that
works also with the polynomial dependencies.

The zero invariants and the identical invariants are removed immediately after their
generation. The removing of the products is based on multiplication of each invariant
with each and search on the product in our list. If e.g. product of invariants Ii1 and Ii2
is an invariant Ii3 and we find it in our list, we know Ii3=Ii1 · Ii2 . If it is not in our list,
we add it there. Finally, the products are removed, but before, they are used for the test
of linear dependencies.

When some group of invariants have the same moment orders in each term (we call
them the invariants with the same structure), they can be potentially linearly dependent.
We compose a matrix of the coefficients; one coefficient from each term. The rank of this
matrix equals the number of linearly independent (irreducible) invariants from this group.
The other (reducible) invariants are finally removed together with the products. We use
singular value decomposition for the rank computation and reduced row echelon form to
find a basis of invariants.

When partial invariants with non-zero output rank are generated, the algorithm for
multiplication must be slightly modified. While the full invariants can be multiplied freely
and the result is always full invariant, the partial invariants cannot. During multiplication,
the contraction ranks are added and we need to generate only the products with the same
contraction ranks. In practice, we need to include all the invariants of lower ranks to the
multiplication.

In some cases, especially in 3D, the number of the products is enormous and this
algorithm is slow (sometimes slower than the invariant generation). Then it is possible to
try to remove all dependencies together by the Langbein’s test.

3.6 Elimination of Dependent Invariants

If some invariants I1, I2, ..., In are dependent, it means there is a function f that
f(I1, I2, ..., In) = 0. Since the invariants are polynomials of the moments, there can be no
other dependence than also polynomial, i.e. smooth. When the function f is smooth, we
can differentiate this equation.

∂f(I1, I2, ..., In)

∂mj

=
n

∑

i=1

∂f(I1, I2, ..., In)

∂Ii

∂Ii
∂mj

= 0, (16)

where mj is some moment occurring in the invariants. It can be understood as a system
of linear equations with known matrix S = {sij} = ∂Ii/∂mj and the unknown vector
b = {bi} = ∂f(I1, I2, ..., In)/∂Ii. If S has the full rank, the system has only one solution
full of zeros. The invariants are then independent, otherwise the rank of it equals the
number of independent invariants.

19

Analytic solution in whole space would be too demanding, therefore we compute the
system only at one point. We choose some random numbers with uniform distribution
form 0 to 1 as values of the moments. We evaluate the derivatives for these moment
values and compute a basis of independent invariants by the reduced row echelon form
algorithm. The singular value decomposition is used here just for the check of the matrix
rank.

We need not only to solve the equation Sb = 0, but also to find the indices of the
independent invariants. It is advantageous to use Gauss-Jordan elimination for conversion
of the matrix S to reduced row echelon form. The indices of the used pivots then equal
the indices of the independent invariants. In some cases, we can choose an arbitrary
invariant from a group of dependent invariants, therefore the invariants should be sorted
in S according to their complexity. The elimination then selects the set of independent
invariants as simple as possible.

When we have partial invariant P (i) with np components (i.e. i = 1, . . . np), we would
obtain np such systems of linear equations. In this case, we concatenate their matrices to
one S = [S(1), . . . ,S(np)]. Then, we solve the system of linear equations

SbT = [S(1), . . . ,S(np)]







b(1)

...

b(np)






= 0. (17)

As a result, some invariants can be contained more then once in the parts of the
solution corresponding to the different components. We must remove these duplicities
and the number of independent partial invariants is then less than the rank of the matrix
S.

The test is numerical, therefore we choose randomly five sets of moment values and
repeat the test five times. If the results of all five sets are the same, we consider it to
be the correct result. If they differ, it usually means that default tolerances of non-zero
singular values in rank computation and pivots in reduced row echelon form computation
must be changed.

4 Conclusion

This software is intended for the generation of the invariants of the tensor fields. When
we want to use these generated invariants, we need additional functions for reading the
invariants in the txt files, moment computation and evaluation of the invariants. These
functions are not included in this software, but they can be delivered separately.

Good luck with “Afinvtensors”!

References

[1] R.M. Bowen and C. Wang. Introduction to Vectors and Tensors. Dover books on
mathematics. Dover Publications, 2008.

[2] P. Grinfeld. Introduction to Tensor Analysis and the Calculus of Moving Surfaces.
Springer New York, 2013.

20

[3] Grigorii Borisovich Gurevich. Foundations of the Theory of Algebraic Invariants.
Nordhoff, Groningen, The Netherlands, 1964.

[4] Grigorii Borisovich Gurevich. Osnovy teorii algebraicheskikh invariantov. OGIZ,
Moskva, The Union of Soviet Socialist Republics, 1937.

[5] Ming-Kei Hu. Visual pattern recognition by moment invariants. IRE Transactions
on Information Theory, 8(2):179–187, 1962.

[6] H. Dirilten and T. G. Newman. Pattern matching under affine transformations. IEEE
Transactions on Computers, 26(3):314–317, 1977.

[7] David Cyganski and John A. Orr. Object recognition and orientation determination
by tensor methods. In T. S. Huang, editor, Advances in Computer Vision and Image
Processing, pages 101–144, Greenwich, Connecticut, USA, 1988. JAI Press.

[8] Max Langbein and Hans Hagen. A generalization of moment invariants on 2D vector
fields to tensor fields of arbitrary order and dimension. In Proceedings of 5th Inter-
national Symposium Advances in Visual Computing, ISVC’09, Part II, volume 5876
of Lecture Notes in Computer Science, pages 1151–1160. Springer, 2009.

[9] Roxana Bujack and Hans Hagen. Moment Invariants for Multi-Dimensional Data. In
Evren Ozerslan, Thomas Schultz, and Ingrid Hotz, editors, Modelling, Analysis, and
Visualization of Anisotropy, Mathematica and Visualization, Basel, 2017. Springer.

[10] Jan Flusser, Tomáš Suk, and Barbara Zitová. 2D and 3D Image Analysis by Mo-
ments. Wiley, Chichester, U.K., 2016.

21

