

Handling Blur Image Restoration

Jan Flusser, Filip Sroubek, Barbara Zitova

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Prague

Invariants to convolution

g(x, y) = (f * h)(x, y)

I(f * h) = I(f)for any admissible *h*

$$I(f) \equiv \frac{\mathcal{F}(f)}{\mathcal{F}(Pf)}$$

1990s: Flusser et al., centrosymmetry assumption

Projection operators

$$I(f) \equiv \frac{\mathcal{F}(f)}{\mathcal{F}(Pf)}$$

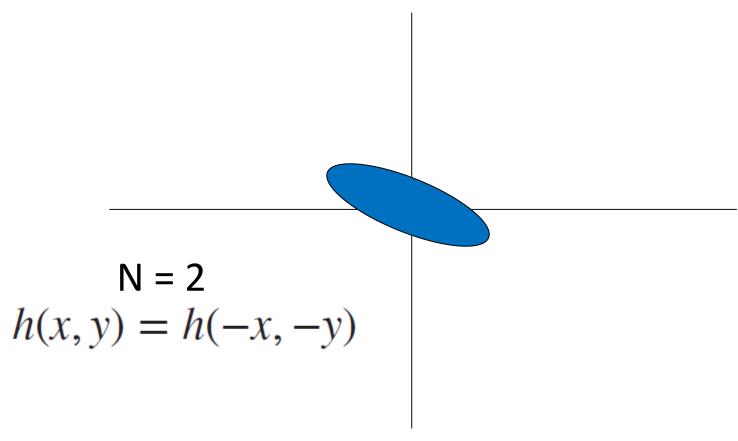
- \mathcal{I} the image space
- $\mathcal{S} \subset \mathcal{I}$ the PSF space closed under convolution
- P: projection operator $\mathcal{I} \to \mathcal{S}, P^2 = P$

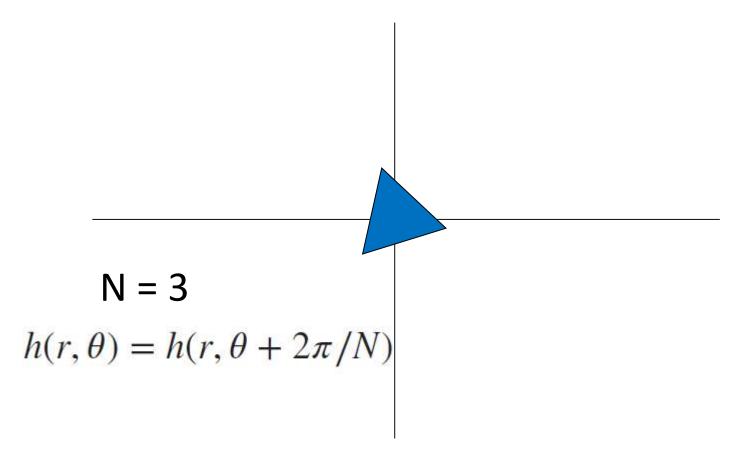
Applicability of the FTBI

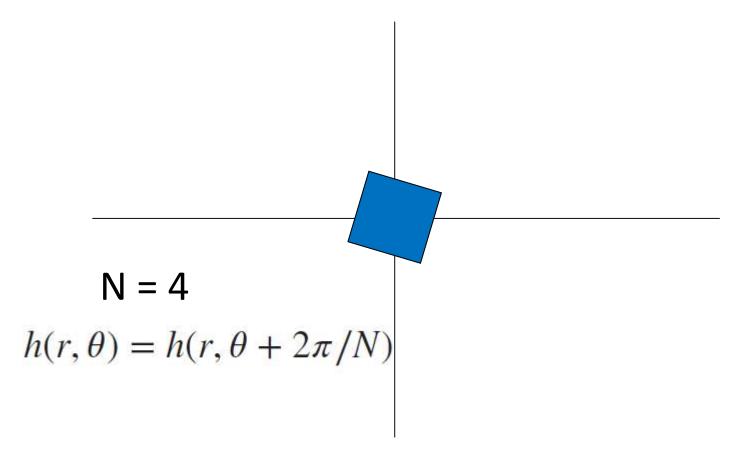
- Which PSF spaces **S** are closed under convolution?
- For which **S** can we construct **P** ?
- Are there any [*S*, *P*] with non-trivial FTBI invariants?
- If yes, do they correspond with real-life PSF's?
- Calculation of the invariants in the image domain?

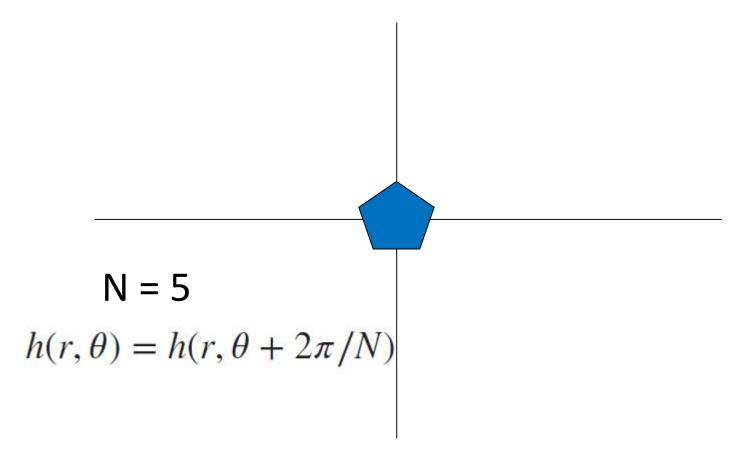
Assumptions on the PSF

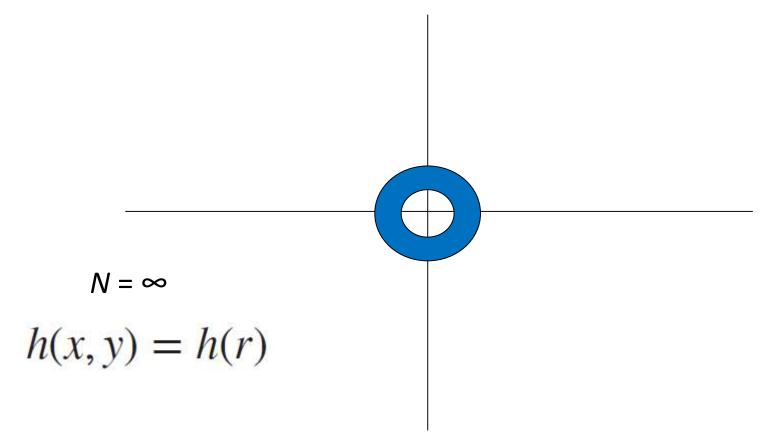
The PSF has N-fold rotation symmetry



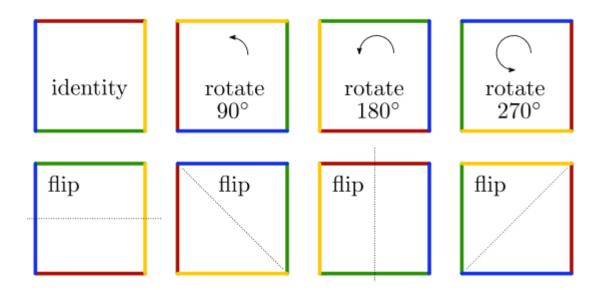






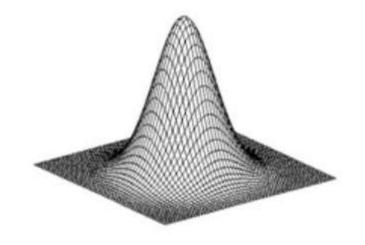


Assumptions on the PSF The PSF has N-fold dihedral symmetry



N-fold rotation symmetry and N mirror reflections

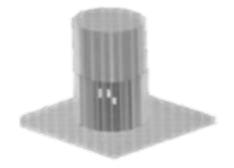
Assumptions on the PSF The PSF has a Gaussian shape



$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

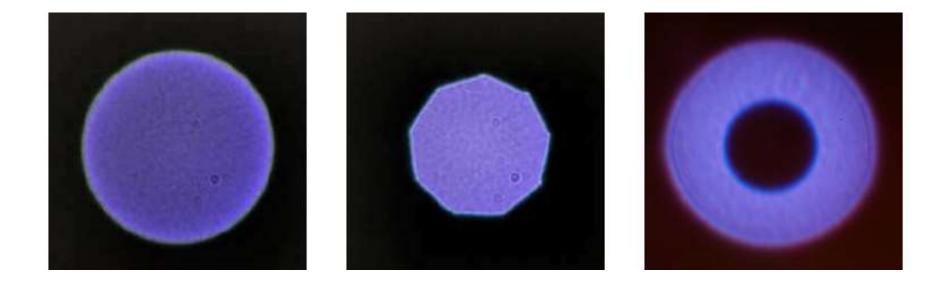
Assumptions on the PSF Out-of-focus blur, "geometric optic approximation"

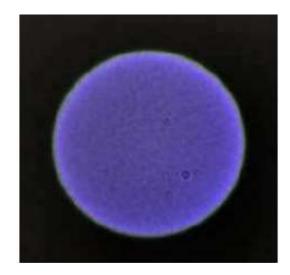
$$g(x,y) = (f * h)(x,y)$$

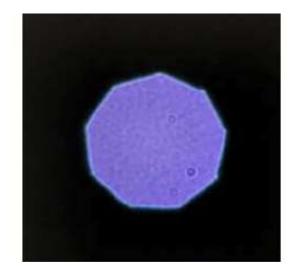


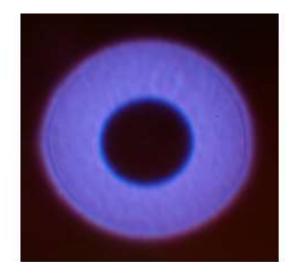
Is it realistic?

Assumptions on the PSF

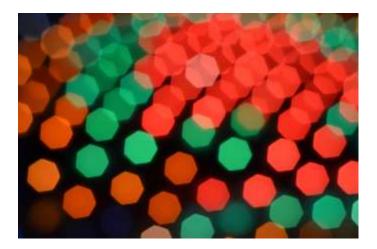


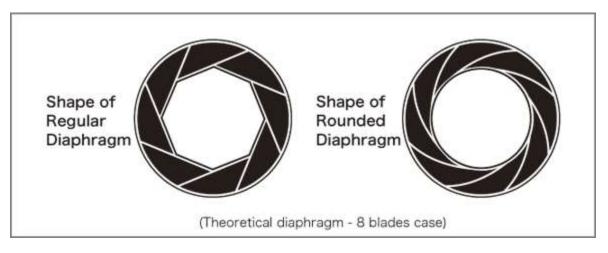






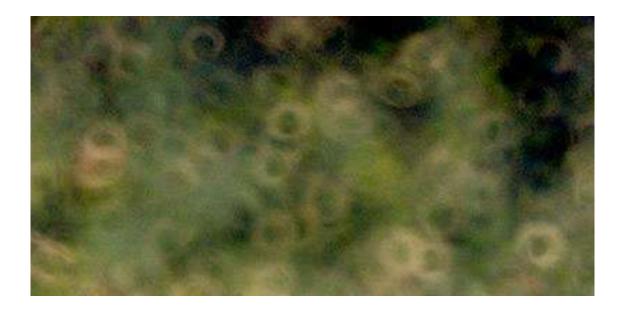
Assumptions on the PSF - apertures

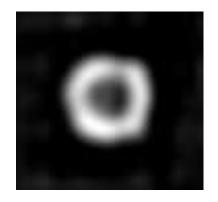




Handling Blur - ICPR 2016

Assumptions on the PSF - bokeh

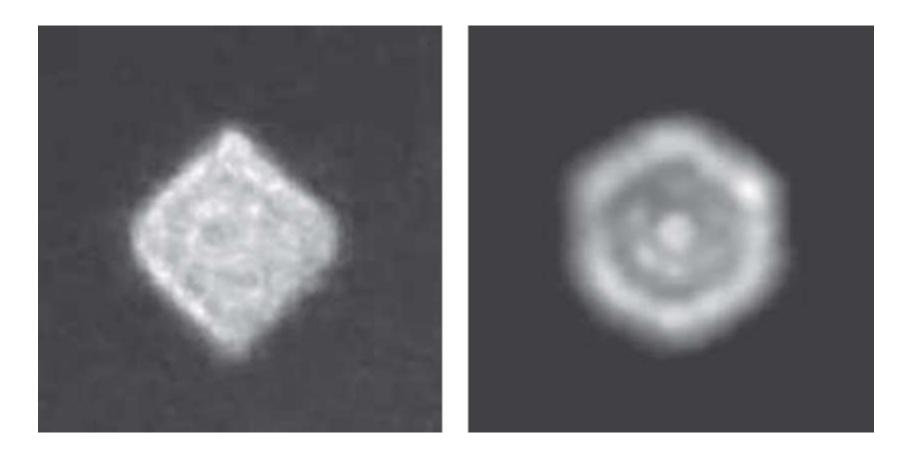




∞-fold rotation symmetry

Assumptions on the PSF - bokeh

Assumptions on the PSF - dihedral



What are moments?

Moments are "projections" of the image function into a polynomial basis

f(x, y) – piecewise continuous image function defined on bounded $\Omega \subset \mathcal{R} \times \mathcal{R}$ $\{\mathcal{P}_{pq}(x, y)\}$ – set of polynomials defined on Ω

$$M_{pq} = \int \int \mathcal{P}_{pq}(x, y) f(x, y) dx dy$$

Geometric moments

$$m_{pq}^{(f)} = \int_{R^2} x^p y^q f(x, y) dx dy$$

(p + q) - the order of the moment

Oth order - area

- 1st order center of gravity $x_t = \frac{m_{10}}{m_{00}}, \quad y_t = \frac{m_{01}}{m_{00}}$
- 2nd order moments of inertia
- 3rd order skewness

Central moments

$$\mu_{pq}^{(f)} = \int_{R^2} (x - x_t)^p (y - y_t)^q f(x, y) dx dy$$
$$x_t = m_{10}/m_{00}, \quad y_t = m_{01}/m_{00}$$

Normalized central moments

$$\nu_{pq} = \frac{\mu_{pq}}{\mu_{00}^w} \qquad w = \frac{p+q}{2} + 1$$

.

Complex moments

$$c_{pq}^{(f)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + iy)^p (x - iy)^q f(x, y) dx dy$$

The moments under convolution $g(x,y) = (f \ast h)(x,y)$

Geometric/central

$$\mu_{pq}^{(g)} = \sum_{k=0}^{p} \sum_{j=0}^{q} {p \choose k} {q \choose j} \mu_{kj}^{(h)} \mu_{p-k,q-j}^{(f)}$$

Complex

$$c_{pq}^{(g)} = \sum_{k=0}^{p} \sum_{j=0}^{q} \binom{p}{k} \binom{q}{j} c_{kj}^{(h)} c_{p-k,q-j}^{(f)}$$

Applicability of the FTBI

- Which PSF spaces *S* are closed under convolution?
- For which **S** can we construct **P** ?
- Are there any [*S, P*] with non-trivial FTBI invariants?
- If yes, do they correspond with real-life PSF's?
- Calculation of the invariants in the image domain?

Intuition: How to eliminate $c_{kj}^{(h)}$?

Intuition: How to eliminate $c_{kj}^{(h)}$?

• centrosymmetric PSF (N = 2) with a unit integral

h(x, y) = h(-x, -y)

90% of blur invariants two fold rotation symmetry ...

Intuition: How to eliminate $c_{kj}^{(h)}$?

 $c_{pq}^{(g)} = \sum_{k=0}^{p} \sum_{j=0}^{q} \binom{p}{k} \binom{q}{j} \underbrace{c_{kj}^{(h)}}_{kj} c_{p-k,q-j}^{(f)}$ even

 $\begin{aligned} \mathbf{c}_{00}^{(g)} &= c_{00}^{(f)} c_{00}^{(h)} = c_{00}^{(f)} \\ \mathbf{c}_{10}^{(g)} &= c_{10}^{(f)} c_{00}^{(h)} + c_{00}^{(f)} c_{10}^{(h)} = c_{10}^{(f)} + c_{00}^{(f)} c_{10}^{(h)} \\ \mathbf{c}_{20}^{(g)} &= c_{20}^{(f)} + 2c_{10}^{(f)} c_{10}^{(h)} + c_{00}^{(f)} c_{20}^{(h)} \\ \mathbf{c}_{30}^{(g)} &= c_{30}^{(f)} + 3c_{20}^{(f)} c_{10}^{(h)} + 3c_{10}^{(f)} c_{20}^{(h)} + c_{00}^{(f)} c_{30}^{(h)} \end{aligned}$

Invariants to centrosymmetric convolution

$$C(3,0) = \mu_{30},$$

$$C(2,1) = \mu_{21},$$

$$C(1,2) = \mu_{12},$$

$$C(0,3) = \mu_{03}.$$

Invariants to centrosymmetric convolution

 $C(5,0) = \mu_{50} - \frac{10\mu_{30}\mu_{20}}{\mu_{00}},$ $C(4,1) = \mu_{41} - \frac{2}{\mu_{00}} (3\mu_{21}\mu_{20} + 2\mu_{30}\mu_{11}),$ $C(3,2) = \mu_{32} - \frac{1}{\mu_{00}} (3\mu_{12}\mu_{20} + \mu_{30}\mu_{02} + 6\mu_{21}\mu_{11}),$ $C(2,3) = \mu_{23} - \frac{1}{\mu_{23}} (3\mu_{21}\mu_{02} + \mu_{03}\mu_{20} + 6\mu_{12}\mu_{11}),$ $C(1,4) = \mu_{14} - \frac{2}{\mu_{02}} (3\mu_{12}\mu_{02} + 2\mu_{03}\mu_{11}),$ μ_{00} $C(0,5) = \mu_{05} - \frac{10\mu_{03}\mu_{02}}{10\mu_{03}\mu_{02}}$ μ_{00} Handling Blur - ICPR 2016

Invariants to centrosymmetric convolution

$$C(p,q)^{(f)} = \mu_{pq}^{(f)} - \frac{1}{\mu_{00}^{(f)}} \sum_{\substack{n=0\\0 < n+m < p+q}}^{p} \sum_{m=0}^{q} {\binom{p}{n}} {\binom{q}{m}} C(p-n,q-m)^{(f)} \cdot \mu_{nm}^{(f)}$$

$$K(p,q)^{(f)} = c_{pq}^{(f)} - \frac{1}{c_{00}^{(f)}} \sum_{n=0}^{p} \sum_{\substack{m=0\\0 < n+m < p+q}}^{q} \binom{p}{n} \binom{q}{m} K(p-n,q-m)^{(f)} \cdot c_{nm}^{(f)}$$

where (p + q) is odd

What is the intuitive meaning of the invariants? "measure of anti-symmetry"

What about FT domain?

Convolution invariants in FT domain

$$g = f * h$$

$$G = F \cdot H$$

$$|G| = |F| \cdot |H|$$

$$phG = phF + phH$$

Convolution invariants in FT domain

Centrosymmetric $h(x, y) \Longrightarrow$ real H(u, v)ph $H \in \{0; \pi\}$

$\tan(\mathrm{ph}G) = \tan(\mathrm{ph}F)$

Back to projection operators

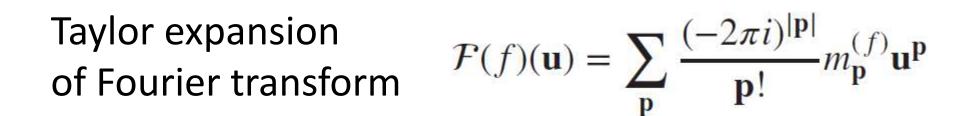
Invariants to convolution

$$I(f) \equiv \frac{\mathcal{F}(f)}{\mathcal{F}(Pf)}$$

 \mathcal{I} – the image space $\mathcal{S} \subset \mathcal{I}$ – the PSF space closed under convolution P: projection operator $\mathcal{I} \to \mathcal{S}, P^2 = P$

Invariants to convolution

$$\mathcal{F}(Pf)(\mathbf{u}) \cdot I(f)(\mathbf{u}) = \mathcal{F}(f)(\mathbf{u})$$



$$\sum_{\mathbf{p}\in D} \frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!} m_{\mathbf{p}}^{(f)} \mathbf{u}^{\mathbf{p}} \cdot \sum_{\mathbf{p}} \frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!} A_{\mathbf{p}} \mathbf{u}^{\mathbf{p}} = \sum_{\mathbf{p}} \frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!} m_{\mathbf{p}}^{(f)} \mathbf{u}^{\mathbf{p}}$$

Invariants to convolution

$$\sum_{\mathbf{p}\in D}\frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!}m_{\mathbf{p}}^{(f)}\mathbf{u}^{\mathbf{p}}\cdot\sum_{\mathbf{p}}\frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!}A_{\mathbf{p}}\mathbf{u}^{\mathbf{p}}=\sum_{\mathbf{p}}\frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!}m_{\mathbf{p}}^{(f)}\mathbf{u}^{\mathbf{p}}$$

comparing the coefficients of the same powers of **u**

$$\sum_{\mathbf{k}\in D}^{\mathbf{p}} \frac{(-2\pi i)^{|\mathbf{k}|}}{\mathbf{k}!} \frac{(-2\pi i)^{|\mathbf{p}-\mathbf{k}|}}{(\mathbf{p}-\mathbf{k})!} m_{\mathbf{k}} A_{\mathbf{p}-\mathbf{k}} = \frac{(-2\pi i)^{|\mathbf{p}|}}{\mathbf{p}!} m_{\mathbf{p}}$$

$$\sum_{\mathbf{k}\in D}^{\mathbf{p}} \begin{pmatrix} \mathbf{p} \\ \mathbf{k} \end{pmatrix} m_{\mathbf{k}} A_{\mathbf{p}-\mathbf{k}} = m_{\mathbf{p}}$$

General definition of blur invariants in the image domain

$$\sum_{\mathbf{k}\in D}^{\mathbf{p}} \begin{pmatrix} \mathbf{p} \\ \mathbf{k} \end{pmatrix} m_{\mathbf{k}} A_{\mathbf{p}-\mathbf{k}} = m_{\mathbf{p}}$$

$$m_{\mathbf{0}}A_{\mathbf{p}} = m_{\mathbf{p}} - \sum_{\substack{\mathbf{k}\in D\\\mathbf{k}\neq\mathbf{0}}}^{\mathbf{p}} \begin{pmatrix} \mathbf{p}\\\mathbf{k} \end{pmatrix} m_{\mathbf{k}}A_{\mathbf{p}-\mathbf{k}}$$

 $A_p \sim \text{moments of the primordial image I(f) of } f$

No need of I(f) construction ! No need of FT !

Invariants to centrosymmetric PSF

centrosymmetric PSF (N = 2) with a unit integral

$\mathcal{S} \equiv C_2 = \{h \in \mathcal{I} \mid h(x, y) = h(-x, -y)\}$

Invariants to centrosymmetric PSF

Invariants to centrosymmetric PSF

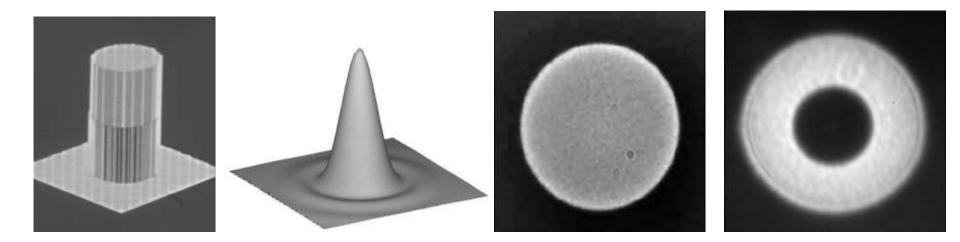
$$(P_2f)(x,y) = (f(x,y) + f(-x,-y))/2$$

$$I_2(f) = \frac{F}{P_2 F}$$
 $I_2(f) = 1 + i \tan(\text{ph } F)$

$$K(p,q)^{(f)} = c_{pq}^{(f)} - \frac{1}{c_{00}^{(f)}} \sum_{n=0}^{p} \sum_{\substack{m=0\\0 < n+m < p+q}}^{q} {\binom{p}{n}} {\binom{q}{m}} K(p-n,q-m)^{(f)} \cdot c_{nm}^{(f)}$$

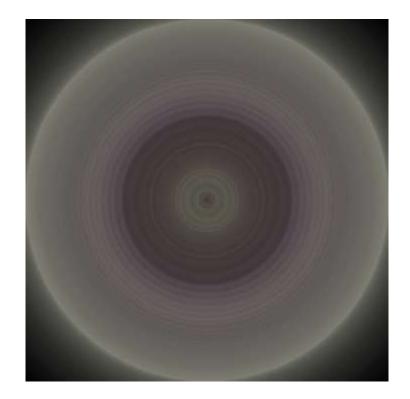
 $D = \{\mathbf{p} | \text{ such that } |\mathbf{p}| \text{ is even} \}.$

Invariants to circularly symmetric PSF



$S \equiv C_{\infty} = \{h \in \mathcal{I} | h(r, \theta) = h(r)\}$

Invariants to circularly symmetric PSF



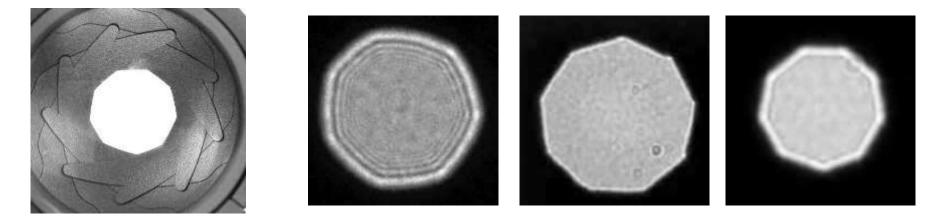
Invariants to circularly symmetric PSF

$$(P_{\infty}f)(r) = \frac{1}{2\pi} \int_{0}^{2\pi} f(r,\theta) d\theta$$

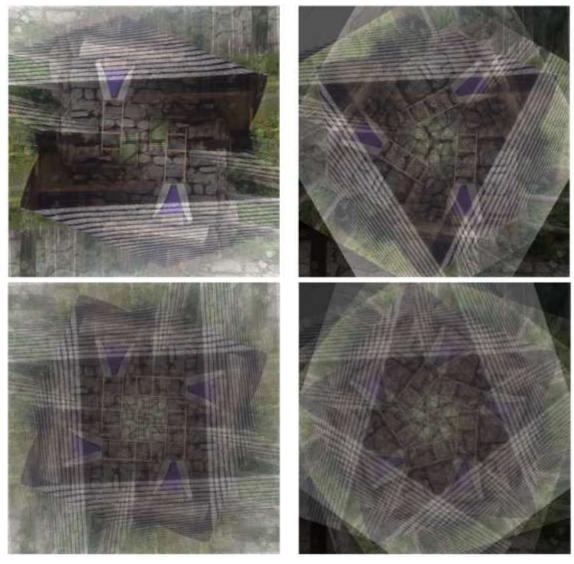
$$K_{\infty}(p,q)^{(f)} = c_{pq}^{(f)} - \frac{1}{c_{00}^{(f)}} \sum_{n=1}^{q} {p \choose n} {q \choose n} K_{\infty}(p-n,q-n)^{(f)} \cdot c_{nn}^{(f)}$$

 $D = \{(p, p) | p \ge 0\}$

out-of-focus blur on a polygonal aperture an aperture - physical diaphragm blades



 $S \equiv C_N = \{h \in \mathcal{I} | h(r, \theta) = h(r, \theta + 2\pi/N) \}$

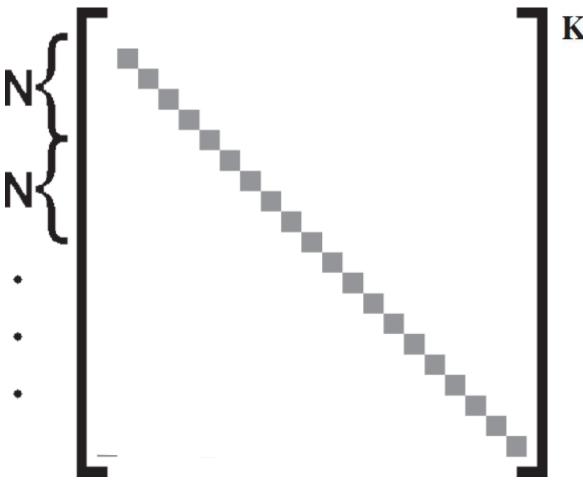


$$(P_N f)(r, \theta) = \frac{1}{N} \sum_{j=1}^N f(r, \theta + \alpha_j)$$

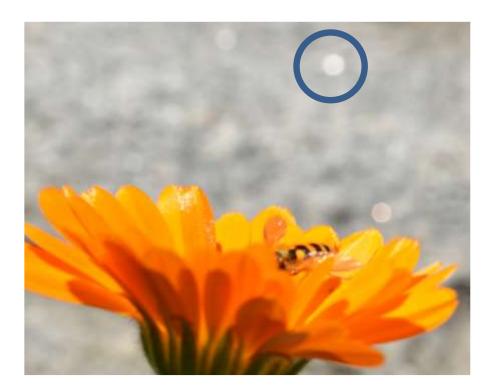
$$\alpha_i = 2\pi j/N$$

$$K_N(p,q)^{(f)} = c_{pq}^{(f)} - \frac{1}{c_{00}^{(f)}} \sum_{\substack{n=0\\0 < n+m\\(n-m)/N \text{ is integer}}}^p \sum_{\substack{m=0\\n \neq m}}^{q} \binom{p}{n} \binom{q}{m} K_N(p-n,q-m)^{(f)} \cdot c_{nm}^{(f)}$$

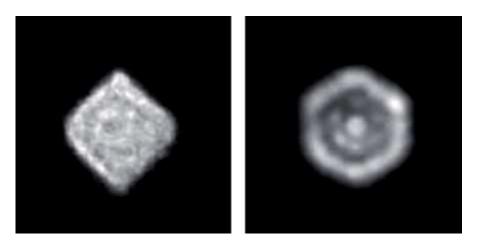
$$D_N = \{(p,q) | (p-q)/N \text{ is integer} \}$$



$$\mathbf{K}_{ij} = K_N(i-1, j-1)$$



overestimate N \rightarrow lose invariance underestimate N \rightarrow lose discriminability different cameras \rightarrow greatest common divisor

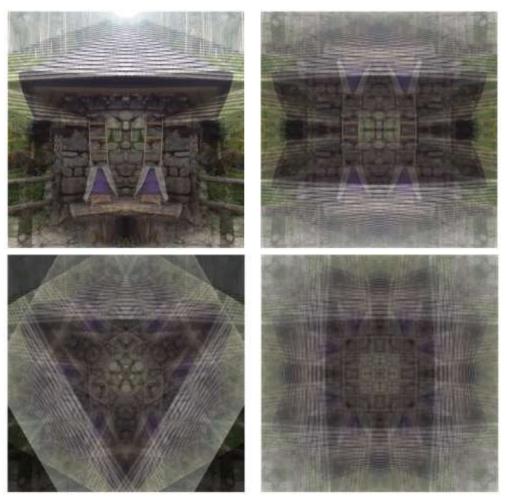


N-FRS plus axial $f^{\alpha}(\mathbf{x}) = f(S\mathbf{x})$ $S = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$

 $S \equiv D_N = \{h \in C_N | \exists \alpha \text{ such that } h(x, y) = h^{\alpha}(x, y) \}$ $S \equiv C_N = \{h \in \mathcal{I} | h(r, \theta) = h(r, \theta + 2\pi/N) \}$

for any finite N, D_N is not closed under convolution

The closure property is preserved only if the angle α is known and fixed for the whole S



$$Q_N^{\alpha} f = P_N((f + f^{\alpha})/2)$$

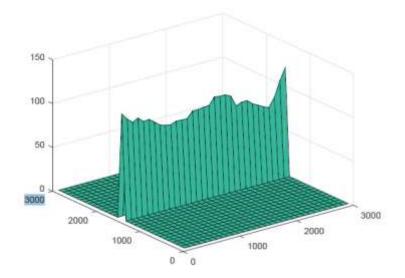
$$\begin{split} L_N^{\alpha}(p,q) &= c_{pq} - \frac{1}{2c_{00}} \sum_{\substack{j=0\\0 < j+k\\(j-k)/N \text{ is integer}}}^p \sum_{k=0}^q \binom{p}{j} \binom{q}{k} L_N^{\alpha}(p-j,q-k) \cdot (c_{jk} + c_{kj}e^{2i\alpha(p-q)}) \end{split}$$

Limitation - the axis orientation must be known and fixed

"motion" blur

$$h(x, y) = h_1(x)\delta(y).$$

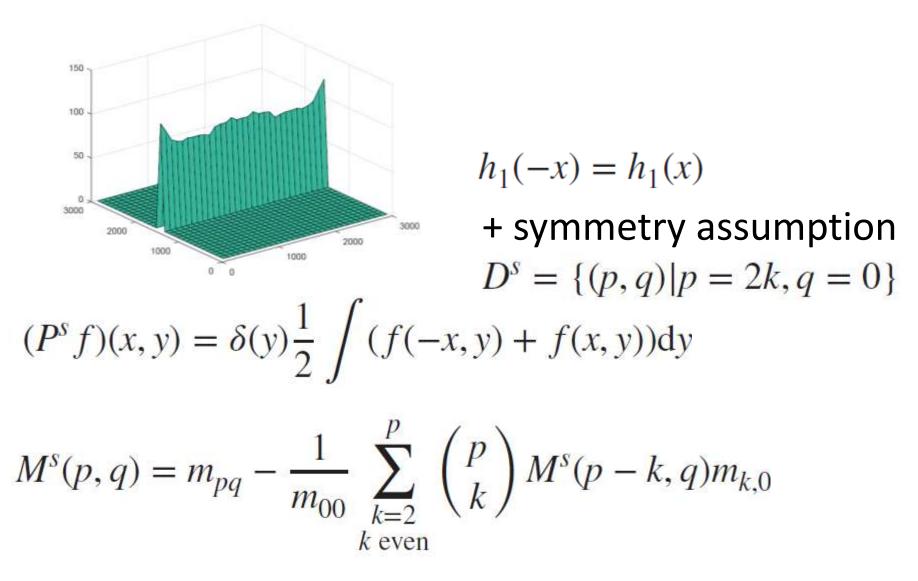
S - set of all functions of the given form

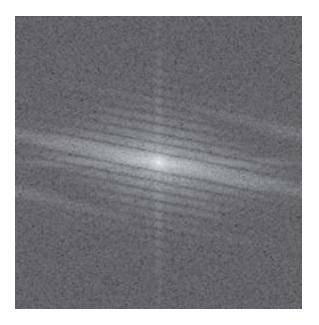


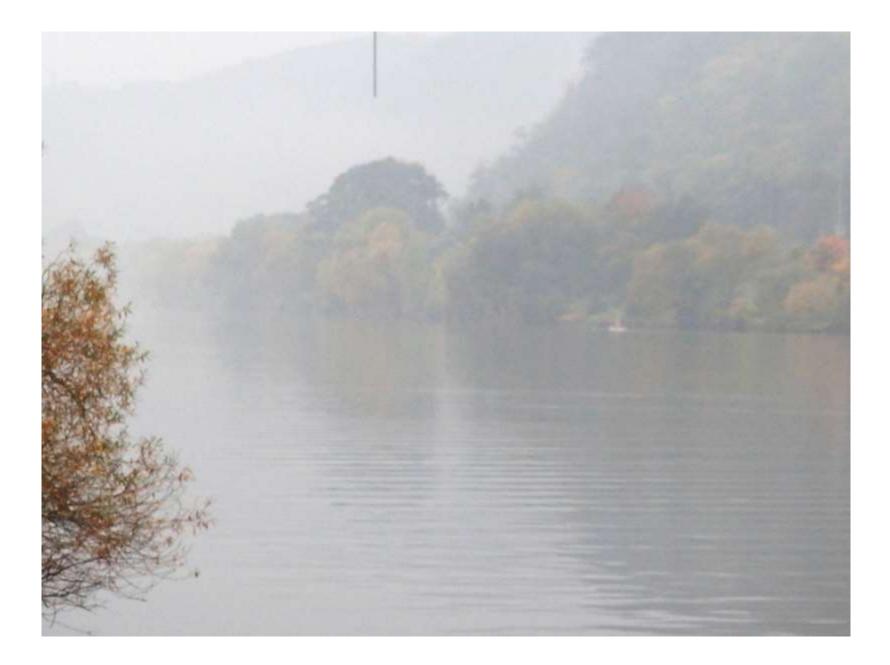
$$(Pf)(x,y) = \delta(y) \int f(x,y) dy$$
$$|D = \{(p,q) | q = 0\}$$

$$M(p,q) = m_{pq} - \frac{1}{m_{00}} \sum_{k=1}^{p} {\binom{p}{k}} M(p-k,q)m_{k,0}$$

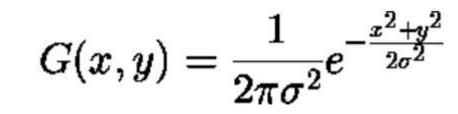
"motion" blur – direction has to be known







Invariants to Gaussian PSF



 $\mathcal{S}_G = \{ a G_\sigma | \sigma \geq 0, a \neq 0 \}$

- symmetric special case of circular symmetry blur
- asymmetric special case of 2-fold dihedral PSF
- designed higher discriminability
- not "image function" no bounded support
- set of Gaussians not a vector space

Invariants to Gaussian PSF

circularly symmetric 2D Gaussian

$$c_{pq}^{(G_{\sigma})} = \begin{cases} \left(2\sigma^{2}\right)^{p} p! & p = q\\ 0 & p \neq q \end{cases}$$

$$P_G f(x, y) = c_{00}^{(f)} G_s(x, y) \equiv \frac{c_{00}^{(f)}}{2\pi s^2} e^{-\frac{x^2 + y^2}{2s^2}}$$
$$s^2 = c_{11}^{(f)} / 2c_{00}^{(f)}$$

 $P_G f$ has the same c_{00} and c_{11} as f

Invariants to Gaussian PSF

$$K_G(p,q)^{(f)} = c_{pq}^{(f)} - \sum_{k=1}^q k! {\binom{p}{k}} {\binom{q}{k}} {\binom{q}{k}} {\binom{q}{\binom{f}{\binom{f}{0}}}}^k K_G(p-k,q-k)^{(f)}$$

$$K_G(p,q)^{(f)} = \sum_{j=0}^q j! \binom{p}{j} \binom{q}{j} \left(-\frac{c_{11}^{(f)}}{c_{00}^{(f)}}\right)^j c_{p-j,q-j}^{(f)}$$

If
$$p = q = 1 \rightarrow$$
 the invariant is zero

Combined moment invariants

set *S* of the admissible PSFs - closed also w.r.t. the considered geometric transformations

N-FRS blur (N > 2) + affine transform dihedral blur + general rotation Gaussian radially symmetric blur + affine transform directional blur + rotation

any blur + translation and/or uniform scaling

Combined moment invariants rotation

N-FRS blur, based on complex moments radial Gaussian blur, based on complex moments

$$K'(p,q) = e^{-i(p-q)\alpha} \cdot K(p,q)$$

$$I = \prod_{j=1}^{n} K(p_j, q_j)^{k_j} \qquad \sum_{j=1}^{n} k_j (p_j - q_j) = 0$$

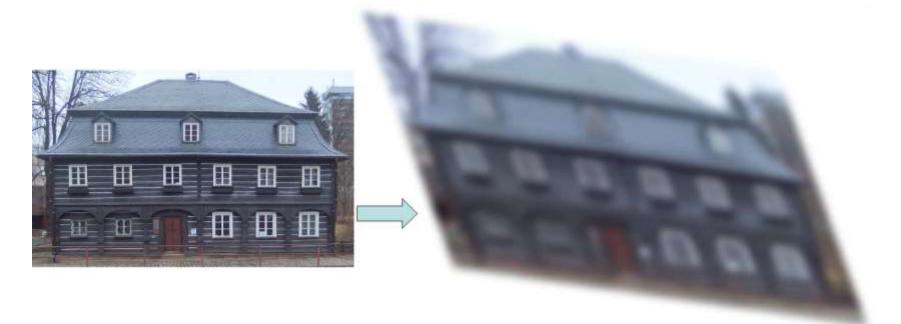
 $K(p,q)K(1,2)^{p-q}$

Combined moment invariants dihedral

restrict the admissible rotation angles to integer multiples of π/N

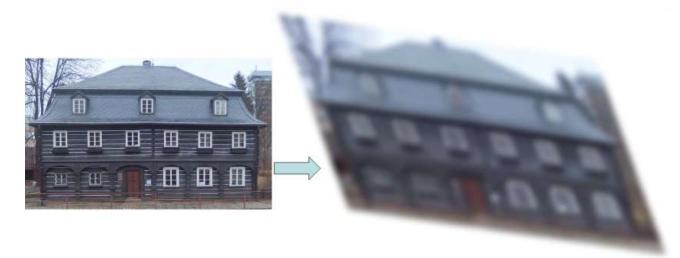
$$L_N^{\alpha}(p,q)' = e^{-i(p-q)\theta} \cdot L_N^{\alpha}(p,q)$$

Invariants to convolution and affine transform



centrosymmetric PSF other not closed under AT

Invariants to convolution and affine transform



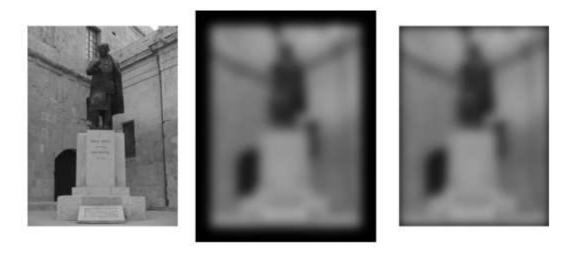
 $I(\mu_{00},..., \mu_{PQ})$ C(p,q) affine moment invariant blur invariant

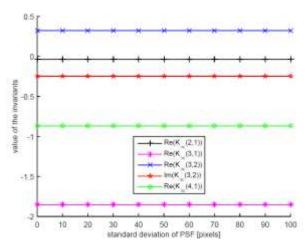
I(C(0,0),...,C(P,Q))

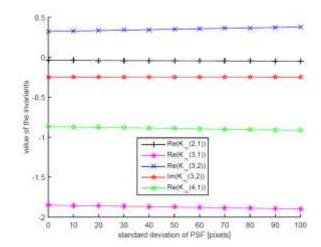
combined blur-affine invariant CBAI Handling Blur - ICPR 2016 Reported applications of convolution and combined invariants

- Character/digit/symbol recognition in the presence of vibration, linear motion or out-of-focus blur
- Robust image registration (medical, satellite, ...)
- Detection of image forgeries

Robustness of blur invariants



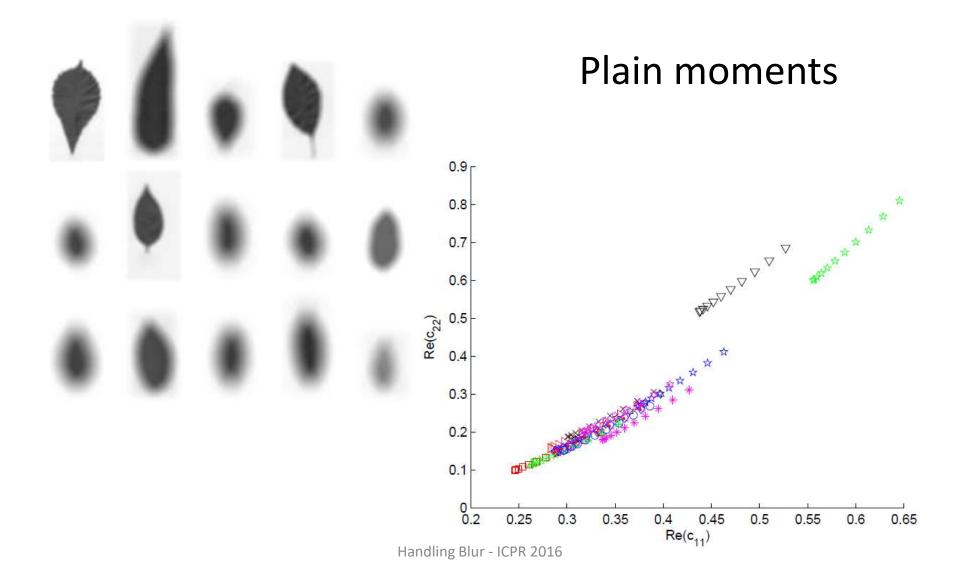




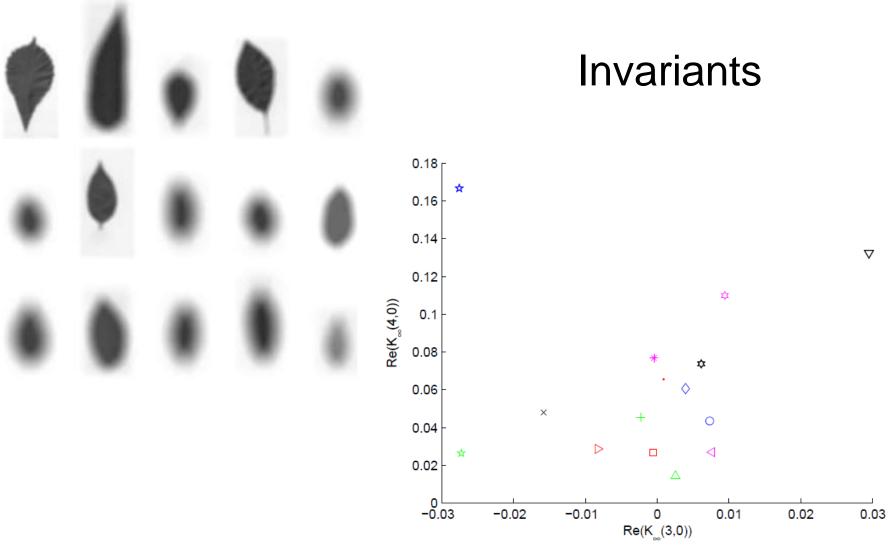
Leaf recognition system MEW2010

10 000 tree leaves 100 classes (species) Recognition based solely on the contour

Leaf recognition system MEW2010

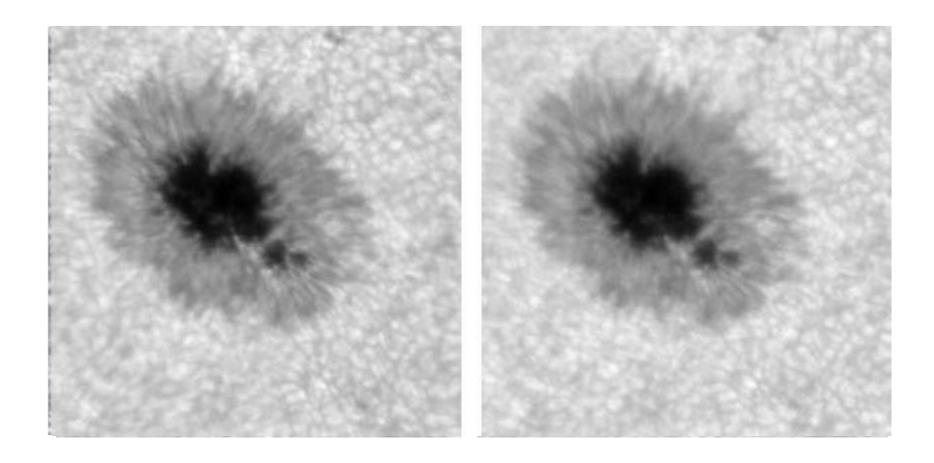


Leaf recognition system MEW2010



Handling Blur - ICPR 2016

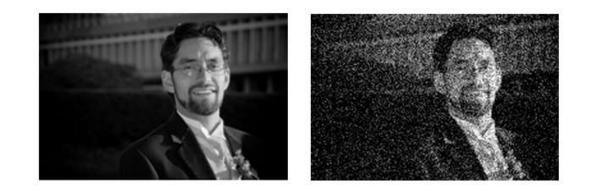
Recognition abilities of blur invariants



Recognition abilities of blur invariants

Image	Mean error	Standard deviation
	Cross-correlation	
(b)	7.30	3.82
(c)	7.29	3.81
(d)	7.28	3.80
	Gaussian blur invariants	
(b)	0.88	0.45
(c)	0.90	0.47
(d)	0.85	0.44

Blur invariants and CBIR



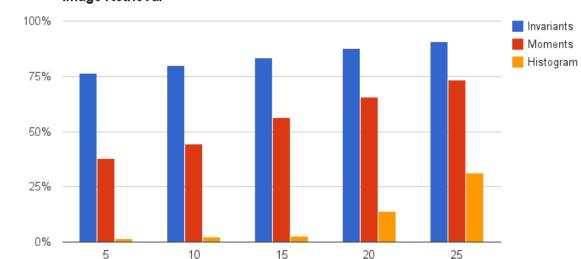
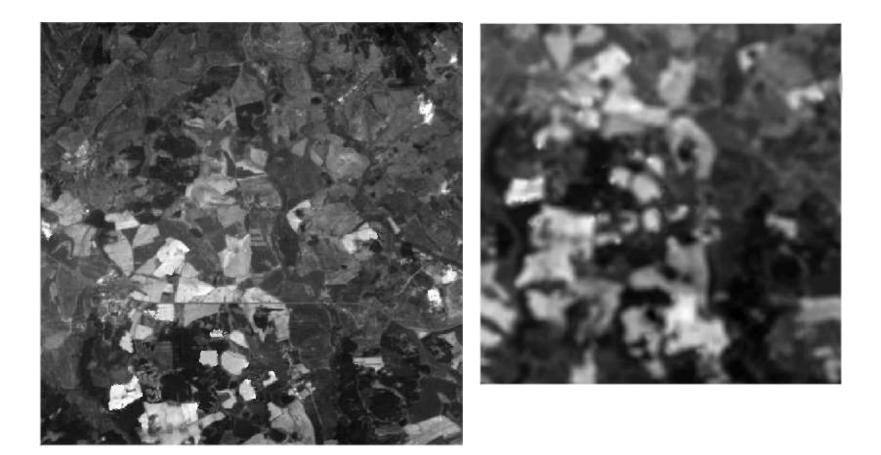


Image Retrieval

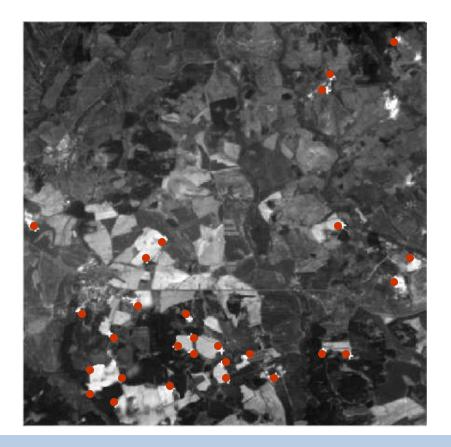
Percentage of correct match

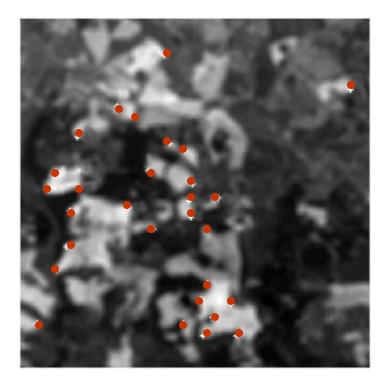
Handling Blur - ICPR 2016

Satellite image registration by combined invariants

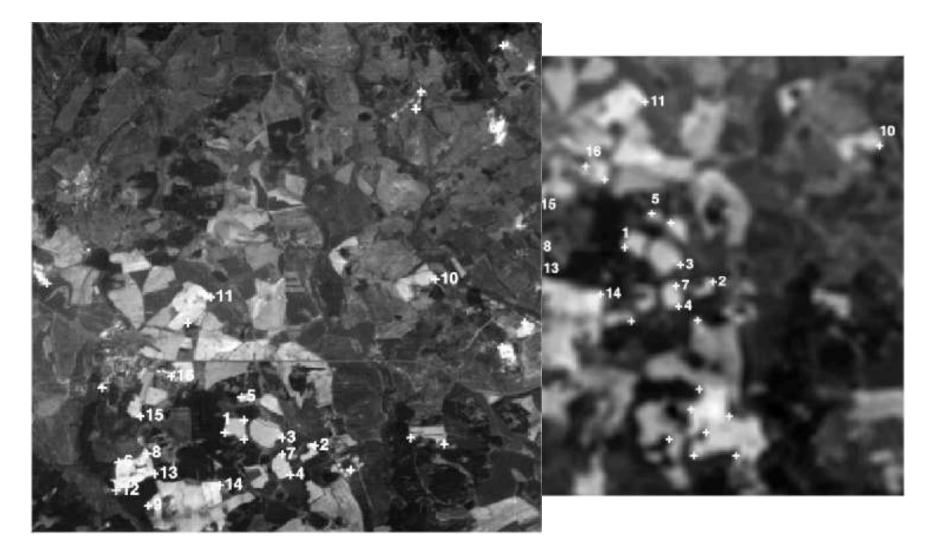


Control point detection

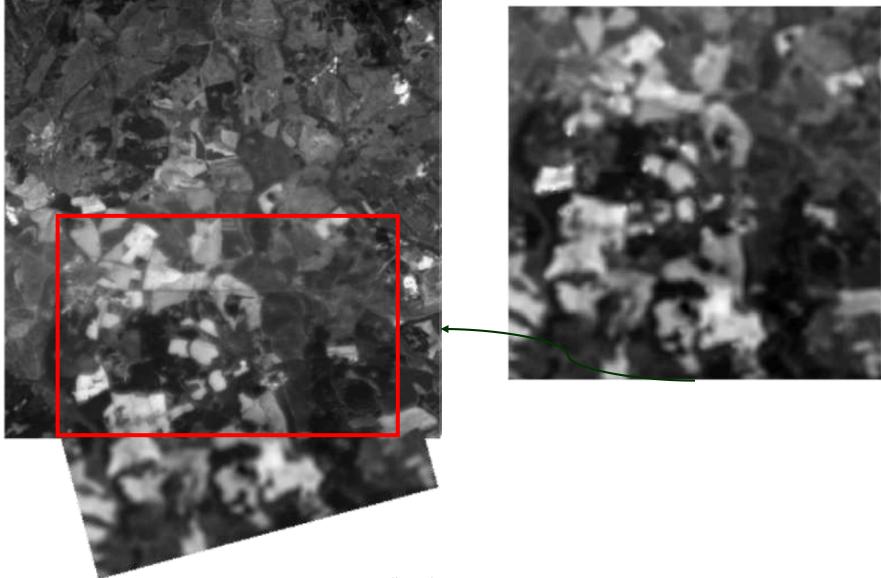




Control point matching



Registration result

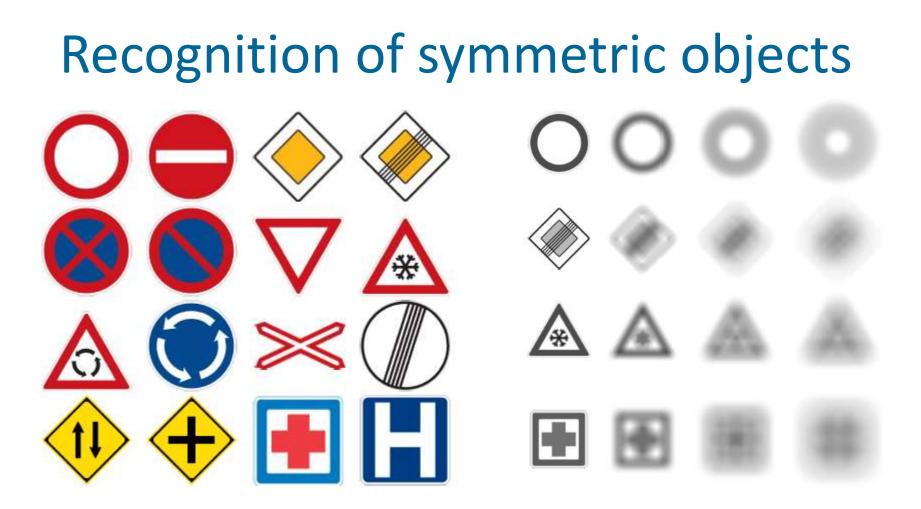


Multichannel blind deconvolution

Multichannel blind deconvolution

Handling Blur - ICPR 2016

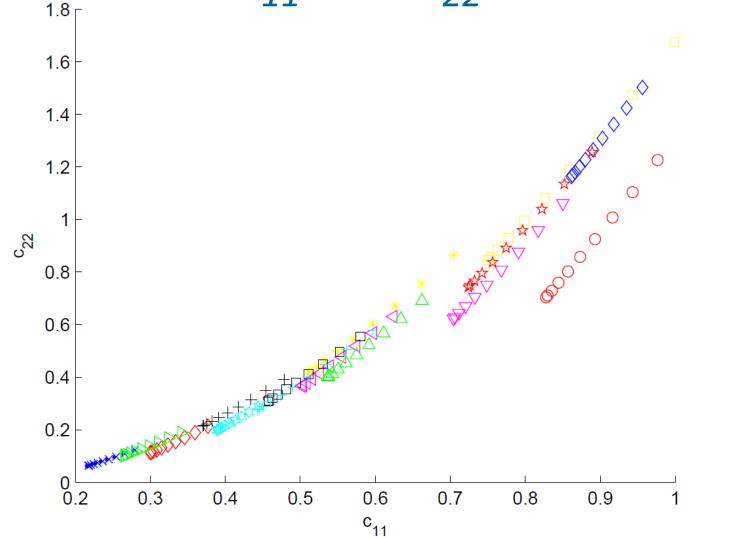
Detecting forgeries



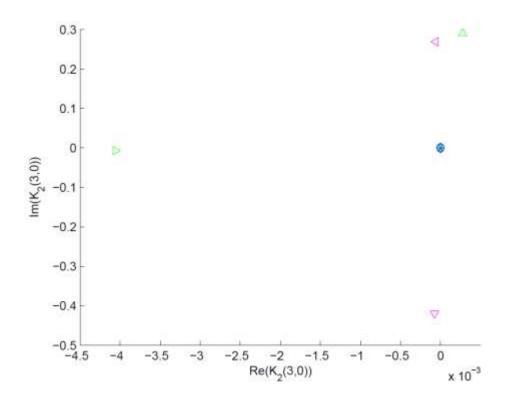
7 signs of 2-FRS4 signs of 4-FRS

4 signs of 3-FRS 1 sign having ∞-FRS

Recognition of symmetric objects c_{11} and c_{22}

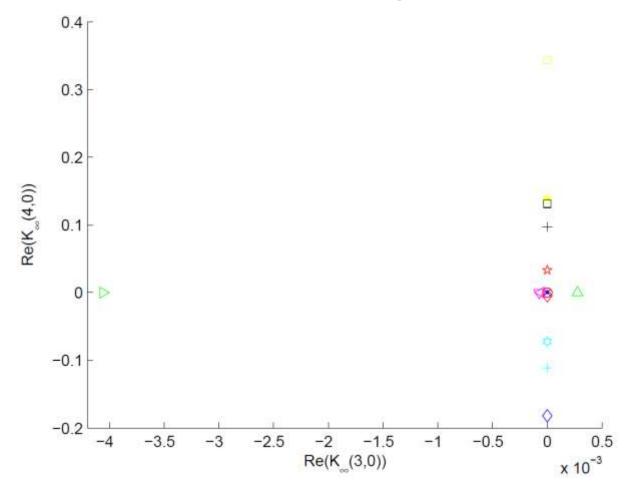


Recognition of symmetric objects Real and Im of K₂(3,0)



signs with even-fold symmetry lie in its nullspace

Recognition of symmetric objects Real and Im of $K_{\infty}(3,0)$

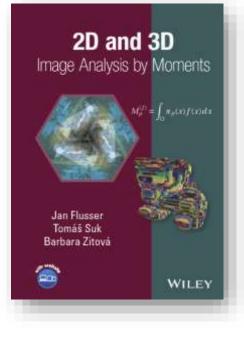


Reconstruction versus Invariants

 Whole image is needed - > reconstruction

Scene analysis, object detection ->

invariants



zoi.utia.cas.cz/tutorials

Thank you...

Handling Blur - ICPR 2016