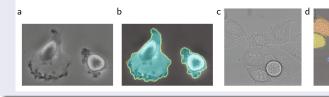
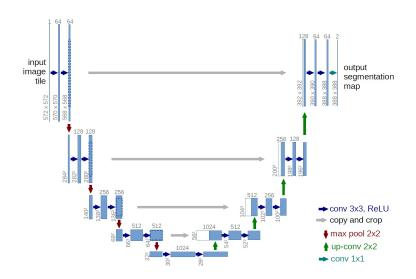
New advances in the U-net architecture

Jan Schier

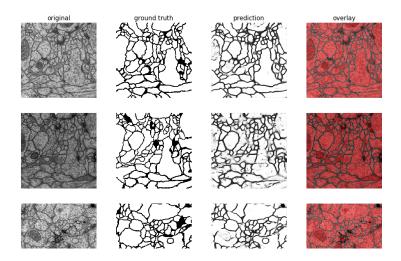
20. 5. 2022


Contents

- review of the U-net architecture
- U-net for denoising: N2N, N2V
- DenoiSeg: mixture of denoising & segmentation
- W-net & Bidirectional U-net

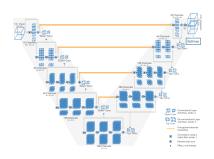

U-net review

- First described 2015 in "Ronneberger & al: U-Net:
 Convolutional Networks for Biomedical Image Segmentation"
- Segmentation network


U-net configuration

U-net

- contracting path
 - reducing resolution
 - doubling the number of features
 - from fine, low-level to high-level features
- expansive path
 - reconstruction of image
 - novelty: shortcut connections to improve localization
- Original implemenation: caffe language
- "Reference implementation": Karol Zak https://github.com/karolzak/keras-unet


ISBI 2015 Winner

Applications: medical imaging, bioimaging

Example:

V-net: 3D Net for Volumetric Segmentation, Milletari & al, 2016 PROMISE12 MICCAI MRI prostate segmentation challenge

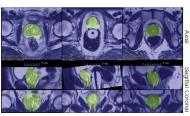


Figure 5. Qualitative results on the PROMISE 2012 dataset [10].

Good overview (2019)

Hesamian, M.H., Jia, W., He, X. et al.

Deep Learning Techniques for Medical Image Segmentation:

Achievements and Challenges

Journal of Digital Imaging 32, 582–596 (2019)

https://doi.org/10.1007/s10278-019-00227-x

Other applications

Denoising

attempts to avoid clean reference

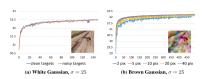
- often difficult to obtain (medical X-ray, confocal time-lapse microscopy, etc.)
- Several approaches:
 - Noise2noise: compare with noisy image
 - Noise2Void: compare with void image

Clever construction of targets

Noise2Noise

Standard training task:

$$\operatorname*{arg\,min}_{\Theta} \mathbb{E}_{x}\{\mathbb{E}_{y|x}\{\mathit{L}(\mathit{f}_{\Theta}(x),y)\}\}$$


Replace distribution p(y|x) with distributions with the same expected values:

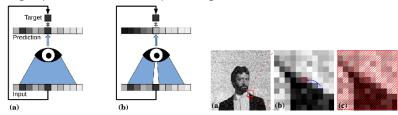
$$\underset{\Theta}{\operatorname{arg\,min}} \sum_{i} L(f_{\Theta}(\hat{x}_{i}), \hat{y}_{i})$$

https://github.com/NVlabs/noise2noise

Noise2Noise - performance

Performance for white and coloured noise

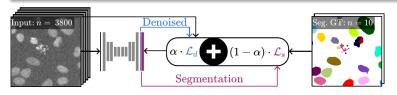
Text removal


Disadvantage

Two independent images with the same contents not always available – especially in bioimaging

Noise2void

Target patches from the input image

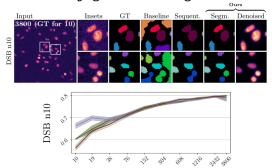

Blind-spot network https://github.com/juglab/n2v

Construction of patches

DenoiSeg

Joint denoising & segmentation

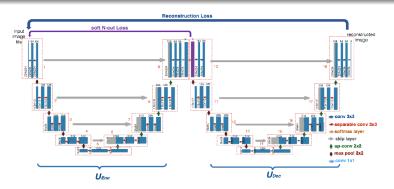
- Annotations for segmentation are often costly (time-consuming manual preparation)
- (Much) more images than annotations
- This method combines Noise2Void training with segmentation training



$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \alpha \cdot \mathcal{L}_d(\mathbf{x}_i, f(\mathbf{x}_i)) + (1 - \alpha) \cdot \mathcal{L}_s(\mathbf{y}_i, f(\mathbf{x}_i))$$

DenoiSeg

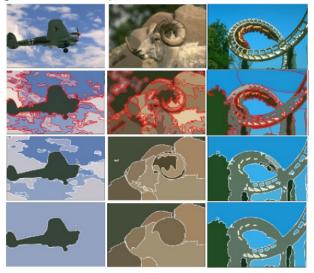
https://github.com/juglab/DenoiSeg


CSBDeep toolbox

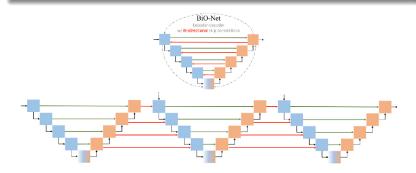
Noise2Void + DenoiSeg + CARE + StarDist = CSBDeep

Jug Lab Center for Systems Biology Dresden Max Planck Institute of Molecular Cell Biology and Genetics Florian Jug

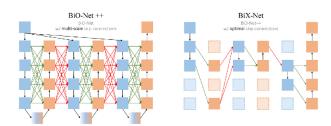
W-net


Xia, Kulis, Boston University, 2017

- Fully unsupervised segmentation
- Two cascaded U-nets: segmentation/image reconstruction
- Segmentation: encoding U-net output
- K features, postprocessing (CRF + merging of segments)


W-net

Some segmentation examples



Bi-directional U-net

Xiang, Zhang, & al: Towards bi-directional skip connections in encoder-decoder architectures and beyond Medical Image Analysis, Vol. 78, 2022 https://doi.org/10.1016/j.media.2022.102420

Multi-level skips

Bix-Net: connections optimized by Neural Architecture Search

Methods	MaNuSeg		TNBC					
	IoU (%)	DICE (%)	IoU (%)	DICE (%)	#Params	Overhead ¹	MACs	Overhead
BiO-Net	69.9+0.2	82.0+0.2	62,2+0.4	75.8+0.5	14.99 M	3845%	115.67 G	313%
BiO-Net+	70.0 ± 0.3	82.2±0.3	67.5±0.4	80.4±0.5	0.43 M	13%	34.36 G	23%
Phase1 searched	69.8±0.2	82.1±0.2	66.8±0.6	80.1±0.4	0.43 M	13%	31.41 G	12%
BiX-Net	69.9+0.3	82.2+0.2	68.0+0.4	80.8+0.3	0.38 M	0%	28.00 G	0%

¹ Overhead compared to BiX-Net.

Conclusions

- Introduction to U-net
- U-net in denoising applications
- New architectures for segmentation